PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method of RTS noise identification in noise signals of semiconductor devices in the time domain

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper a new method of Random Telegraph Signal (RTS) noise identification is presented. The method is based on a standardized histogram of instantaneous noise values and processing by Gram-Charlier series. To find a device generating RTS noise by the presented method one should count the number of significant coefficients of the Gram-Charlier series. This would allow to recognize the type of noise. There is always one (first) significant coefficient (c0) representing Gaussian noise. If additional coefficients cr (where r > 0) appear it means that RTS noise (two-level as well as multiple-level) is detected. The coefficient representing the Gaussian component always has the highest value of all. The application of this method will be presented on the example of four devices, each with different noise (pure Gaussian noise signal, noise signal with two-level RTS noise, noise signal with three-level RTS noise and noise signal with not precisely visible occurrence of RTS noise).
Rocznik
Strony
95--107
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11, 80-233 Gdańsk, Poland, bstawarz@eti.pg.gda.pl
Bibliografia
  • [1] J.L. Dawson: “Electrochemical Noise Measurement for Corrosion Application”. ASTM STP 1277, West Conshohocken, American Society for Testing and Materials, PA, 1996.
  • [2] M.G. Pujar, T. Anita, H. Shaikh, R.K. Dayal, H.S. Khatak: “Analysis of Electrochemical Noise (EN) Data Using MEM for Pitting Corrosion of 316 SS in Chloride Solution”. Int. J. Electrochem. Sci., no. 2, 2007, pp. 301-310.
  • [3] L.B. Kish, F. Green, G. Iannaccone, J.R. Vig: “Noise and Information in nanoelectronics, sensors and Standards”. Proc. of SPIE International Conference on Noise and Information in nanoelectronics, sensors and Standards, SPIE - The International Society of Optical Engineers, SPIE Proceedings Series, vol. 5115, 2003.
  • [4] M. Kotarski, J. Smulko: “Noise measurement set-ups for fluctuations-enhanced gas sensing”. Metrol. Meas. Syst., vol. XVI, no. 3, 2009, pp. 457-464.
  • [5] C. Claeys, E. Simoen: “Noise as a diagnostic tool for semiconductor material and device characterization”. J. Electrochem. Soc., 145, no. 6, 1998, pp. 2058-2067.
  • [6] C. Ciofi, B. Neri: “Low-frequency noise measurements as a characterisation tool for degradation phenomena in solid-state devices”. J. Phys. D. Appl., no. 33, 2000, pp. 199-216.
  • [7] B.K. Jones: “Electrical noise as a reliability indicator in electronic devices and components”. IEEE Proc.-Circuits Devices Syst., vol. 149, no. 1, Feb. 2002, pp. 13-22.
  • [8] A. Konczakowska: “Quality and 1/f noise of electronic components”. Quality and Reliability Engineering International, vol. 11, 1995, pp. 165-169.
  • [9] Konczakowska, J. Cichosz, A. Szewczyk, B. Stawarz: “Identification of optocoupler devices with RTS noise”. Fluctuation and Noise Letters, vol. 6, no. 4, 2006, pp. L395-L404.
  • [10] J. Lal-Jadziak, S. Sienkowski: “Variance of random signal mean square value digital estimator”. Metrol. Meas. Syst., vol. XVI, no. 2, 2009, pp. 267-278.
  • [11] A. Konczakowska: ”Low frequency noise, measurements methods, application to quality of semiconductor devices evaluation”. Academy Printing House EXIT, Warszawa, 2007. (in Polish)
  • [12] Z. Celik-Butler: “Measurement and analysis methods for Random Telegraph Signals”. Proc. of Advanced Experimental Methods for Noise Research in Nanoscale Electron Devices, Ed. J. Sikula and M. Levinshtein, Kluwer Academic Publisher, NATO Science Series. II. Mathemetics, Physics and Chemistry, 151, 2004, pp. 219-226.
  • [13] L.K.J. Vandamme, M. Macucci: “1/f and RTS noise in submicron devices: Faster is noisier”. Unsolved problems of nosie and fluctuations: UPoN 2005: Fourth International Conference on Unsolved Problems of Noise and Fluctuations in Physics, Biology, and High Technology. AIP Conference Proceedings, vol. 800, 2005, pp. 436-443.
  • [14] Y. Yuzhelevki, M. Yuzhelevki, G. Jung: “Random Telegraph Noise analysis in time domain”. Rev. Scientific Instruments, vol. 71, Apr. 2000.
  • [15] J. Cichosz, A. Szatkowski: “Noise scattering patterns methods for recognition of RTS noise in semiconductor components”. Proc. of 18th Inter. Conference on Noise and Fluctuations - ICNF 2005, Salamanca, Spain, 19-23 September 2005, Eds. T. Gonzalez, J. Mateos, D. Pardo, AIP Conference Proceedings, pp. 673-676.
  • [16] Stawarz-Graczyk, D. Załęski, A. Konczakowska: “The automatic system for identification of random telegraph signal (RTS) noise in noise signals”. Metrol. Meas. Syst., vol. XIV, no. 2, 2007, pp. 219-228.
  • [17] Stawarz-Graczyk, A. Szewczyk, A. Konczakowska: “The identification of inherent noise components of semiconductor devices on an example of optocouplers”. Opto-Electronics Review, vol. 17, no. 2, 2009, pp. 87-92.
  • [18] A. Drapella: “Statistical inference on the basis of skewness and kurtosis”. Pomeranian Pedagogical University, 2004. (in Polish)
  • [19] S. Blinnikov, R. Moessner: “Expansions for nearly Gaussian distributions”. Astron. Astrophys. Suppl. Ser., no. 130, 1998, pp. 193-205.
  • [20] A. Hald: “The Early History of the Cumulants and the Gram-Charlier Series”. International Statistical Review, vol. 68, no. 2, 2000, pp. 137-153.
  • [21] M. Kotarski, J. Smulko: “Noise measurement set-ups for fluctuations-enhanced gas sensing”. Metrol. Meas. Syst., vol. XVI, no. 3, 2009, pp. 457-464.
  • [22] J. Lal-Jadziak, S. Sienkowski: “Models of bias of mean square value digital estimator for selected deterministic and random signals”. Metrol. Meas. Syst., vol. XV, no. 1, 2008, pp. 55-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0062-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.