PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective number of observations and unbiased estimators of variance for autocorrelated data - an overview

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When observations are autocorrelated, standard formulae for the estimators of variance, s², and variance of the mean, s²(x), are no longer adequate. They should be replaced by suitably defined estimators, sa² and sa²(x), which are unbiased given that the autocorrelation function is known. The formula for sa² was given by Bayley and Hammersley in 1946, this work provides its simple derivation. The quantity named effective number of observations neff is thoroughly discussed. It replaces the real number of observations n when describing the relationship between the variance and variance of the mean, and can be used to express sa² and sa²(x) in a simple manner. The dispersion of both estimators depends on another effective number called the effective degrees of freedom veff. Most of the formulae discussed in this paper are scattered throughout the literature and not very well known, this work aims to promote their more widespread use. The presented algorithms represent a natural extension of the GUM formulation of type-A uncertainty for the case of autocorrelated observations.
Rocznik
Strony
3--16
Opis fizyczny
Bibliogr. 31 poz., wykr., wzory
Twórcy
autor
  • AGH University of Science and Technology, Department of Physics and Applied Computer Science, A. Mickiewicza 30, 30-059 Kraków, Poland, zieba@novell.ftj.agh.edu.pl
Bibliografia
  • [1] ISO/IEC: Guide to the Expression of Uncertainty in Measurement . ISO, Geneva 1995.
  • [2] N.F. Zhang: “Calculation of the uncertainty of the mean of autocorrelated measurements”. Metrologia, vol. 43, 2006, pp. S276-S281.
  • [3] M. Dorozhovets, Z.L. Warsza: “Upgrading calculating methods of the uncertainty of measurement results in practice”. Przegląd Elektrotechniczny, vol. 83, 2007, pp. 1-13. (in Polish)
  • [4] T.J. Witt: “Using the autocorrelation function to characterize time series of voltage measurements”. Metrologia , vol. 44, 2007, pp. 201-209.
  • [5] L. Kirkup, B. Frenkel: An Introduction to the Uncertainty in Measurement. Cambridge University Press, Cambridge, 2006.
  • [6] R.J. Freund, W.J. Wilson, P. Sa: Regression Analysis. Statistical Modeling of a Response Variable. Elsevier, Amsterdam, 2006.
  • [7] M.B. Priestley: Spectral Analysis and Time Series. Elsevier, Amsterdam, 1981.
  • [8] G.E.P. Box, G.M. Jenkins, G.C. Reinsel: Time Series Analysis: Forecasting and Control. Prentice Hall, Englewood Cliffs, 1994.
  • [9] P.J. Brockwell, R.A. Davis: Time series: theory and methods. Springer, New York, 1991.
  • [10] T.W. Anderson: The Statistical Analysis of Time Series. Wiley, New York, 1971.
  • [11] J.S. Bendat, A.G. Piersol: Random data: Analysis and measurement procedures. Wiley, New York, 1971.
  • [12] A.M. Yaglom: Correlation theory of stationary and related random processes. Springer, Berlin, 1987.
  • [13] J. Bartels: “Zur Morphologie geophysikalischer Zeitfunktionen“. Sitz.-Ber. Preuss. Akad. Wiss., vol. 30, 1935, pp. 504-522. (in German)
  • [14] G.V. Bayley, G.M. Hammersley: “The “Effective Number of Independent Observations in an Autocorrelated Time-Series”. J. Roy. Stat. Soc. Suppl., vol. 8, 1946, pp. 184-197. http://www.jstor.org/stable/2983560
  • [15] N.A. Bagrov: “On the equivalent number of independent data”. Tr. Gidrometeor. Cent., vol. 44, 1969, pp. 3-11. (in Russian).
  • [16] D. Lubman: “Spatial Averaging in a Diffuse Sound Field”. J. Acoust. Soc. Am., vol. 46, 1969, pp. 532-534.
  • [17] C.E. Leith: “The standard error of time-averaged estimates of climatic means”. J. Appl. Meteorol., vol. 12, 1973, pp. 1066-1069.
  • [18] J. Taubenheim: “On the significance of the autocorrelation of statistical tests for averages, mean-square deviations and superposed epochs [geophysical data]”. Gerlands Beitr. Geophysik, vol. 83, 1974, pp. 121-128. (in German)
  • [19] Z. Şen: “Small sample estimation of the variance of time-averages in climatic time series”. Int. J. Climatol., vol. 18, 1998, pp. 1725-1732.
  • [20] M.I. Fortus: “Equivalent Number of Independent Observations: A Review.” Izvestia AN. Fizika Atmosf. Okeana, vol. 35, 1999, 725-733. (in Russian)
  • [21] That useful approximate form of Eq. (12) was introduced by Bealey and Hammersley [14]. However, because of an error by a factor of two, approximate formulae for neff and veff given at p. 185 of their paper are incorrect.
  • [22] A. Zięba: “Uncertainty of the mean of correlated observations”. Podstawowe Problemy Metrologii, Conference materials, Sucha Beskidzka, Poland, 11-14 May, 2008, pp. 15-24. (in Polish)
  • [23] A.M. Law, W.D. Kelton: Simulation Modelling and Analysis. McGraw-Hill, New York 2000, pp. 251-252.
  • [24] http://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation. Page modified on 12 Jan. 2010.
  • [25] Incorrect version of Eq. (31) is given in Ref. [14]. See remark [21].
  • [26] M.S. Barlett: “On the theoretical specification and sampling properties of autocorrelated time-series”. J. Roy. Stat. Soc. Suppl., vol. 8, pp. 27-41.
  • [27] A. Zięba, P. Ramza, in preparation.
  • [28] M.G. Cox, C. Eiø, G. Mana, and F. Pennecchi: “The generalized weighted mean of correlated quantities”. Metrologia, vol. 43, 2006, pp. S268-S275.
  • [29] A.D. Cliff, J.K. Ord: “The comparison of means when samples consist of spatially autocorrelated observations”. Environment and Planning A, vol. 7, 1975, pp. 725-734.
  • [30] C.S. Bretherton, M. Widmann, V.P. Dymnikov, J.M. Wallace, I. Bladé: “The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field”. J. Climate, vol. 12, 1999, pp. 1990-2009.
  • [31] N.F. Zhang: “Allan variance of time series models for measurement data”. Metrologia, vol. 45, 2008, pp. 549-561.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0062-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.