PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Inspection of specular and partially specular surfaces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The inspection of specular surfaces differs significantly from the case of non-specular surfaces. In contrast to the non-specular case, the appearance of a specular surface is dominated by the reflections of the environment that are visible in it. The transfer of this observation into automated visual inspection is called deflectometry. The main principle of deflectometric surface acquisition is to use a highly controllable environment, where a screen on which a well-defined pattern is presented is observed via the specular reflecting surface. Knowing that pattern, it is possible to inspect the surface qualitatively and - at least with certain additional knowledge - to reconstruct the surface under test. In this paper, we introduce the theoretical background of deflectometry. After presenting some properties of the deflectometric inspection itself, we describe the qualitative and quantitative evaluation of the deflectometric observation in detail. We will show that an inspection of specular and partially specular objects is feasible in an industrially applicable inspection system. For complexly formed and/or large objects, we propose a robot-based inspection setup.
Rocznik
Strony
415--431
Opis fizyczny
Bibliogr., 43 poz., fot., rys., wzory
Twórcy
autor
autor
autor
autor
  • Universität Karlsruhe, Institut für Anthropomatik, Lehrstuhl für Interaktive Echtzeitsysteme (IES), Adenauerring 4, D-76131 Karlsruhe, Germany, werling@kit.edu
Bibliografia
  • [1] F.E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg, T. Limperis: Geometrical Considerations and Nomenclature for Reflectance. NBS Monograph 160, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, 1977.
  • [2] F. Remondino: “From point cloud to surface: the modeling and visualization problem”. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV-5/W10, 2003.
  • [3] H. Hoppe: Surface reconstruction from unorganized points. PhD thesis. Dept. of Computer Science and Engineering, University of Washington, 1994.
  • [4] B.T. Phong: “Illumination for computer generated pictures”. Communications of the ACM , vol. 18, no. 6, 1975, pp. 311-317.
  • [5] O. Kafri, A. Livnat: “Reflective surface analysis using moiré deflectometry”. Applied Optics, vol. 20, no. 18, 1981, pp. 3098-3100.
  • [6] K. Ikeuchi: “Determining surface orientations of specular surfaces by using the photometric stereo method”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 3, no. 6, 1981, pp. 661-669.
  • [7] R. Ritter, R. Hahn: “Contribution to analysis of the reflection grating method”. Optics and Lasers in Engineering, vol. 4, no. 1, 1983, pp. 13-24.
  • [8] A. Sanderson, L. Weiss, S. Nayar: “Structured highlight inspection of specular surfaces”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 1, 1988, pp. 44-55.
  • [9] J. Balzer: Regularisierung des Deflektometrieproblems - Grundlagen und Anwendung. PhD thesis. Universität Karlsruhe, Universitätsverlag Karlsruhe, 2008.
  • [10]S. Kammel: Deflektometrische Untersuchung spiegelnd reflektierender Freiformflächen. PhD thesis. Universität Karlsruhe, Universitätsverlag Karlsruhe, 2004.
  • [11]D. Pérard: Automated visual inspection of specular surfaces with structured-lighting reflection techniques. PhD thesis. Universität Karlsruhe, VDI-Verlag, Düsseldorf, 2001.
  • [12]S.A. Shafer: “Using color to separate reflection components”. Color Research & Application, vol. 10, no. 4, 1985, pp. 210-218.
  • [13]E.V. Verband der Automobilindustrie: Dekorative Oberflächen von Anbau- und Funktionsteilen im Außenund Innenbereich von Automobilen - VDA Band 16, 2008.
  • [14]R. Chellappa, R.L. Kashyap: “Texture synthesis using 2-d noncausal autoregressive models”. IEEE Transactions on Speech and Signal Processing, vol. 33, no. 1, pp. 194-203, 1985.
  • [15]C.W. Therrien, T.F. Quatieri, D.E. Dudgeon: “Statistical model-based algorithms for image analysis”. Proceedings of the IEEE, vol. 74, no. 4, 1986.
  • [16]M. Topi, O. Timo, P. Matti, S. Maricor: “Robust texture classification by subsets of local binary patterns”. Proceedings of the ICPR 2000, 2000, pp. 3947-3950.
  • [17]R.M. Haralick, K. Shanmugan, I. Dinstein: “Textural features for image classification”. IEEE Transactions on Systems, Man, and Cybernetics, vol. 3, no. 6, 1973, pp. 610-621.
  • [18]A.E. Johnson, M. Hebert: “Using spin images for efficient object recognition in cluttered 3d scenes”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 5, 1999, pp. 433-449.
  • [19]J.H. Massig: “Deformation measurement on specular surfaces by simple means”. Optical Engineering, vol. 40, no. 10, 2001, pp. 2315-2318.
  • [20]S. Werling, J. Balzer, J. Beyerer: “Initial value estimation for robust deflectometric reconstruction”. Proceedings of 8th International Conference on Optical 3-D Measurement Techniques, no. 2, 2007.
  • [21]R.T. Frankot, R. Chellappa: “A method for enforcing integrability in shape from shading algorithms”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 4, 1988, pp. 439-451.
  • [22]D. Terzopoulos: “The computation of visible-surface representations”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 4, 1988, pp. 417-438.
  • [23]B. Karaçali, W. Snyder: “Reconstructing discontinuous surfaces from a given gradient field using partial integrability”. Computer Vision and Image Understanding, vol. 92, no. 1, 2003, pp. 78-111.
  • [24]B. Karaçali, W. Snyder: “Noise reduction in surface reconstruction from a given gradient field”. Int. J. Comput. Vision, vol. 60, no. 1, 2004, pp. 25-44.
  • [25]R. Kickingereder, K. Donner: “Stereo vision on specular surfaces”. Proceedings of IASTED Conference on Visualization, Imaging, and Image Processing, 2004, pp. 335-339.
  • [26]S. Ettl, J. Kaminski, E. Olesch, H. Strauß, G. Häusler: “Fast and robust 3d shape reconstruction from gradient data”. DGaO Proceedings, 2007.
  • [27]S. Ettl, J. Kaminski, M.C. Knauer, G. Häusler: “Shape reconstruction from gradient data”. Applied Optics, vol. 47, no. 12, 2008, pp. 2091-2097.
  • [28]J. Ho, J. Lim, M.H. Yang, D. Kriegman: “Integrating surface normal vectors using fast marching method”. Lecture Notes in Computer Science, 2006.
  • [29]P. Kovesi: “Shapelets correlated with surface normals produce surfaces”. ICCV ’05: Proceedings of the Tenth IEEE International Conference on Computer Vision, IEEE Computer Society, 2005.
  • [30]P. Bochev, R.B. Lehoucq: “On the finite element solution of the pure neumann problem”. SIAM Rev., no. 47, 2005, pp. 50-66.
  • [31]S. Savarese, M. Chen, P. Perona: “Local shape from mirror reflections”. International Journal of Computer Vision, vol. 64, no. 1, 2005, pp. 31-67.
  • [32]A. Zisserman, P. Giblin, A. Blake: “The information available to a moving observer from specularities”. Image Vision Comput., vol. 7, no. 1, 1989, pp. 38-42.
  • [33]S. Roth, M. Black: “Specular flow and the recovery of surface structure”. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, no. 2, 2006, pp. 1869-1876.
  • [34]J. Lellmann, J. Balzer, A. Rieder, J. Beyerer: “Shape from specular reflection and optical flow”. International Journal of Computer Vision, vol. 80, no. 2, 2008, pp. 226-241.
  • [35]S. Rahmann, N. Canterakis: “Reconstruction of specular surfaces using polarization imaging”. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), no. 1, 2001, pp. 149-155.
  • [36]L.B. Wolff: “Surface orientation from two camera stereo with polarizers”. Proc. SPIE, Optics, Illumination, and Sensing for Machine Vision IV, vol. 1194, 1989, pp. 287-297.
  • [37]G.A. Atkinson: Surface Shape and Reflectance Analysis Using Polarisation. PhD thesis. University of York, 2007.
  • [38]Z. Wang, S. Inokuchi: “Determining shape of specular surfaces”. The 8th Scandinavian Conference on Image Analysis, 1993, pp. 1187-1194.
  • [39]T. Bonfort, P. Sturm: “Voxel carving for specular surfaces” Proc. ICCV, 2003, pp. 591-596.
  • [40]M. Knauer, J. Kaminski, G. Häusler: “Phase measuring deflectometry: a new approch to measure specular free-form surfaces”. Optical Metrology in Production Engineering, Proc. SPIE, 5457, 2004, pp. 366-376.
  • [41]M. Petz, R. Tutsch: “Reflection grating photogrammetry: a technique for absolute shape measurement of specular free-form surfaces”. Proceedings of the SPIE Conference on Optical Manufacturing and Testing VI, 2005, pp. 58691D1 - 58691D12.
  • [42]J. Balzer: “Über die Eindeutigkeit der stereo-regularisierten deflektometrischen Oberflächenrekonstruktion”. Tagungsband Bildverarbeitung in der Mess- und Automatisierungstechnik, Regensburg, 2007.
  • [43]J. Balzer, S. Werling, J. Beyerer: “Regularization of the deflectometry problem using shading data”. Proceedings of the SPIE Optics East, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0059-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.