PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A forward model of the respiratory system during airflow interruption

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a methodology of complex electrical model formulation for the respiratory system during airflow interruption. Adequacy of both structural and parametric description to the real physiological system has been taken care of. Properties of the valve-transducer unit, upper airways, bronchial tree, lung tissue chest wall and abdomen have been noted in an equivalent description of the electrical circuit. The resulting analog, combining more than 180 parameters, gives the possibility to imitate conditions of normal breathing and airflow interruption. A qualitative verification of the model has been conducted in the time and frequency domain, based on reported numerous experimental findings. The proposed linear description of the respiratory system can be the source of synthetic data for a verification of the interrupter method and for the procedure of model reduction to its identifiable form.
Rocznik
Strony
219--232
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
Bibliografia
  • [1] I. Bruderman, S. Abboud: “Telespirometry: novel system for home monitoring of asthmatic patients”. Telemed. J., vol. 3, no. 2, 1997, pp. 127-133.
  • [2] O. Diaz, C. Villafranca, H. Ghezzo, G. Borzone, A. Leiva, J. Milic-Emili, C. Lisboa: “Role of inspiratory capacity on exercise tolerance in COPD patients with and without tidal expiratory flow limitation at rest”. Eur. Respir. J., vol. 16, no. 2, 2000, pp. 269-275.
  • [3] C. Tantucci, A. Duguet, A. Ferreti, S. Mehiri, I. Arnulf, M. Zelter, T. Similowski, J.P. Derenne, J. Milic-Emili: “Effect of negative expiratory pressure on respiratory system flow resistance in awake snorers and nonsnorers”. J. Appl. Physiol., vol. 87, no 3, 1999, pp. 969-976.
  • [4] K.R. Lutchen, C.A. Giurdanella, A.C. Jackson: “Inability to separate airway from tissue properties by use of human respiratory input impedance”. J. Appl. Physiol., vol. 68, no. 6, 1990, pp. 2403-2412.
  • [5] K.R. Lutchen, A.C. Jackson: “Confidence bounds on respiratory mechanical properties estimated from transfer versus input impedance in humans versus dogs”. IEEE Trans. Biomed. Eng., vol. 39, no. 6, 1992, pp. 644-651.
  • [6] J. Vogel, U. Schmidt: Impulse oscillometry: analysis of lung mechanics in general practice and the clinic, epidemiological and experimental research. Frankfurt am Main, pmi-Verl.-Gruppe, 1994.
  • [7] J. Mead, J.L. Whittenberger: “Evaluation of airway interruption technique as a method for measuring pulmonary air-flow resistance”. J. Appl. Physiol., vol. 6, no. 7, 1954, pp. 408-416.
  • [8] G. Liistro, D. Stănescu, D. Rodenstein, C. Veriter: “Reassessment of the interruption technique for measuring flow resistance in humans”. J. Appl. Physiol., vol. 67, no. 3, 1989, pp. 933-937.
  • [9] J.H.T. Bates, T. Abe, P.V. Romero, J. Sato: “Measurement of alveolar pressure in closed-chest dogs during flow interruption”. J. Appl. Physiol., vol. 67, no. 1, 1989, pp. 488-492.
  • [10] I. Jabłoński, J. Mroczka: “Computer-aided evaluation of a new interrupter algorithm in respiratory mechanics measurement”. Biocyb. & Biomed. Eng., vol. 26, no. 3, 2006, pp. 33-47.
  • [11] I. Jabłoński, J. Mroczka: “Interrupter valve kinematics in the issues of parameter estimation of the respiratory system model”. Metrol Meas Syst, vol. 14, no. 3, 2007, pp. 339-350.
  • [12] I. Jabłoński, J. Mroczka: Frequency-domain identification of the respiratory system model during the interrupter experiment. Measurement, vol. 42, no. 3, 2009, pp. 390-398.
  • [13] U. Frey, A. Schibler, R. Kraemer: “Pressure oscillations after flow interruption in relation to lung mechanics”. Respir. Physiol., vol. 102, no. 2-3, 1995, pp. 225-237.
  • [14] U. Frey, R. Kraemer: “Oscillatory pressure transients after flow interruption during bronchial challenge test in children”. Eur. Respir. J., vol. 10, no. 1, 1997, pp. 75-81.
  • [15] K.R. Lutchen, K.D. Costa: “Physiological interpretations based on lumped element models fit to respiratory impedance data: use of forward-inverse modelling”. IEEE Trans. Biomed. Eng., vol. 37, no. 11, 1990, pp. 1076-1085.
  • [16] A.G. Polak: “A forward model for maximum expiration”. Comput. Biol. Med., vol. 28, no. 6, 1998, pp. 613-625.
  • [17] E.R. Weibel : Morphometry of the human lung. Academic Press, New York, 1963.
  • [18] I. Ginzburg, D. Elad: “Dynamic model of the bronchial tree”. J. Biomed. Eng., vol. 15, no. X, 1993, pp. 283-288.
  • [19] B.R. Wiggs, R. Moreno, J.C. Hogg, C. Hilliam, P.D. Paré: “A model of the mechanics of airway narrowing”. J. Appl. Physiol., vol. 69, no. 3, 1990, pp. 849-860.
  • [20] R.K. Lambert, T.A. Wilson, R.E. Hyatt, J.R. Rodarte: “A computational model for expiratory flow”. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., vol. 52, no. 1, 1982, pp. 44-56.
  • [21] J. Milic-Emili J. (ed.): Respiratory mechanics. European Respiratory Society. Sheffield, 1999.
  • [22] K.R. Lutchen, A.C. Jackson: “Confidence bounds on respiratory mechanical properties estimated from transfer versus input impedance in humans versus dogs”. IEEE Trans. Biomed. Eng., vol. 39, no. 6, 1992, pp. 644-651.
  • [23] W. Tomalak: “Models of the respiratory system for interpretation of the transfer respiratory impedance”. VIII Symposium “Modelling and Simulations of Measurement Systems”, Krynica Górska, 21-25 September 1998, pp. 183-191. (in Polish)
  • [24] J. Mroczka, A.G. Polak: “Non-invasive method for measurement of respiratory system parameters”. Proceedings of the XIII IMEKO World Congress, Torino, Italy, 5-9 September 1994, vol. 2, pp. 1561-1565.
  • [25] K.R. Lutchen, F.P. Primiano Jr, G.M. Saidel: “A nonlinear model combining pulmonary mechanics and gas concentration dynamics”. IEEE Trans. Biomed. Eng., vol. 29, no. 9, 1982, pp. 629-641.
  • [26] P.V. Romero, J. Sato, F. Shardonofsky, J.H.T. Bates: “High frequency characteristics of respiratory mechanics determined by flow interruption”. J. Appl. Physiol., vol. 69, no. 5, 1990, pp. 1682-1688.
  • [27] U. Frey, B. Suki, R. Kraemer, A.C. Jackson: Human respiratory input impedance between 32 and 800 Hz, measured by interrupter technique and forced oscillations. J. Appl. Physiol., vol. 82, no. 3, 1997, pp. 1018-1023.
  • [28] A.C. Jackson, H.T. Milhorn Jr, J.R. Norman: “A reevaluation of the interrupter technique for airway resistance measurement”. J. Appl. Physiol., vol. 36, no. 2, 1974, pp. 264-268.
  • [29] M. Oswald-Mammosser, A. Charloux, I. Enache, E. Lonsdorfer-Wolf, B. Geny: “A comparison of four algorithms for the measurement of interrupter respiratory resistance in adults”. Respir. Med., vol. 103, no. 1, 2009, pp. 729-735.
  • [30] J.A. Bloom: Monitoring of respiration and circulation. CRC Press LLC, Boca Raton, Florida 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0058-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.