PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Advanced Nanometrology Techniques of Carbon Nanotubes Characterization

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has become evident that carbon nanotubes (CNTs) possess exceptionally high physical, mechanical, electrical, and structural properties that made them attractive for researchers to investigate. In this paper, CNTs synthesized by submerged DC arc in deionized water were subjected to six different characterization techniques in order to have an insight into their intrinsic properties. Stages of CNTs growth scenario during their synthesis were captured by Transmission Electron Microscopy (TEM). Images of Scanning Tunneling Microscopy (STM) depicted the spaghetti-like nature of nanotubes sized in the range from 6 to 8 nm diameters with bends and kinks observed. Transmission Electron Diffraction Microscopy (TEDM) images declared the purity of the synthesized CNTs. Also, Fourier Transformation Infra Red (FTIR) spectrum analysis depicted the transmittance and frequency band widths of peaks relevant to the functional groups. In addition, Raman spectrum analysis disclosed the G and D modes with no radial breathing mode (RBM) for a random sample of the synthesized CNTs indicating some defects, strain, oxidation stated of the SWCNTs with the possibility of multiwalled carbon nanotubes existence as well. Thermo Gravimetric Analysis (TGA) reflected the thermal stability of the synthesized CNTs as they sustained temperatures approaching almost 1000°C. Thus, it can be concluded that the used techniques proved to successfully characterize the synthesized CNTs, so that they can be reasonably nominated for suitable potential application.
Słowa kluczowe
Rocznik
Strony
551--561
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • 1. Wilson M., et al.: Nanotechnology: Basic Science and Emerging Technologies. Chapman and Hall, ISBN: 1-58488-339-1, 2002.
  • 2. Dresselhaus M. S., et al.: ”Carbon Nanotubes: Synthesis, Structure Properties and Applications”. Applied Physics, vol. 80, 2001.
  • 3. Etman.A. Mohamed.: ”Synthesis and Evaluation of Carbon Nano-Tubes and its Applications in Nano-Composites”. Ph.D. Thesis, Mech. Design & Prod. Eng. Dept., Cairo Univ., 2008.
  • 4. Bachtold A. et al.: “Logic Clerics With Carbon Nanotube Transistors”. Science, vol. 294, 2001, pp.1317-1320.
  • 5. R. Martel, et al., “Single And Multi-Wall Carbon Nanotube Field-Effect Transistors”. Appl. Phys. Lett., vol.73, 1998, pp. 2447-2449.
  • 6. Zhou C., et al.: “Electrical Measurements of Individual Semi Conducting Single-Walled Nanotubes Of Various Diameters”. Appl. Phys., Lett., vol.76, 1999, pp. 1597-1599.
  • 7. Bachtold A., et al.: “Logic Circuits With Carbon Nanotube Transistors”. Science, vol.294, 2001, pp. 1317-1320.
  • 8. Bernholc J., et al.: “Theory of Growth And Mechanical Properties of Nanotubes” Appl. Phys,. vol. 67(1), 1998, pp. 39-46.
  • 9. Hata K., et al.: ”Water- Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes”. Science, vol. 306(5700), 2004, pp. 1362-1364.
  • 10. Fan S., et al.: “Self-Oriented Regular Arrays Of Carbon Nanotubes And Their Field Emission Properties”. Science, vol. 283, 1999, pp. 512-514.
  • 11. Journe C. t, et al.: ”Large-Scale Production of Single-Walled Carbon Nanotubes by the Electric-Arc Technique”. Nature, vol. 388, pp. 756-000, 1997.
  • 12. Antisari, M. V. et al.: ”Nanocarbon Production by Arc Discharge in Water”. Carbon, vol. 41, 2003, pp. 2393-2401.
  • 13. Wang H. et al.: ”Large-Scale Synthesis of Single-Walled Carbon Nanohorns by Submerged Arc”. Nanotechnology, vol. 15, 2004, pp. 546-550.
  • 14. Antisari M. V. et al.: ”Synthesis of Multiwalled Nanotubes by Electric Arc Discharges in Liquid Environment”. Carbon, vol. 412, 2003, pp. 393-401.
  • 15. Cui H., et al.: ”Growth Behavior of Carbon Nanotubes on Multilayered Metal Catalyst Film in Chemical Vapor Deposition”. Chem. Phys. Lett., vol. 374, 2003, pp. 222-228.
  • 16. Yudasaka M., et al.: ”Pressure Dependence of The Structures of Carbonaceous Deposits Formed by Laser Ablation on Targets Composed of Carbon Nickel and Cobalt”. J. Phys. Chem. B, vol. 102, 1998, pp. 4892-4896.
  • 17. Geohegan D. B., et al.: ”Condensed Phase Growth of Single-Wall Carbon Nanotubes from Laser Annealed Nano Particulates. Appl. Phys. Lett., vol. 78, 2001, pp. 3307-3309.
  • 18. Kokai F., et al.: ”Growth Dynamics of Single-Wall Carbon Nanotubes and Nanohorn Aggregates by CO Laser Vaporization at Room Temperature”. Appl. Surf. Sci., vol. 197, 2002, pp. 650-655.
  • 19. Scott C. D., et al.: ”Growth Mechanisms for Single-Wall Carbon Nanotubes in a Laser-Ablation Process”. Appl. Phys., vol. 72, 2001, pp. 573-80.
  • 20. Zhang R.Y., et al.: ”Chemical Vapor Deposition of Single-Walled Carbon Nanotubes using Ultra Thin Ni/Al Film As Catalyst”. Nano Lett., vol. 3, 2003, pp. 731-735.
  • 21. McEuen P. L.: ”Single-Wall Carbon Nanotubes”. Phys. World, vol. 13 (6), 2000, pp. 31-36.
  • 22. Bower C., et al.: ”Nucleation and Growth of Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition”. Appl. Phys. Lett., vol. 17, 2000, pp. 2767-2769.
  • 23. Su M., et al, ”Scalable CVD Method for the Synthesis of Single-Walled Carbon Nanotubes With High Catalyst Productivity”. Chem. Phys. Lett., vol. 322, 2000, pp. 321-326.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0049-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.