PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal measurement policy for decision making: a case study of quality management based on laboratory measurements

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measurement information generates value, when it is applied in the decision making. An investment cost and maintenance costs are associated with each component of the measurement system. Clearly, there is - under a given set of scenarios - a measurement setup that is optimal in expected (discounted) utility. Contrary to process design, design of measurement and information systems has not been formulated as such an optimization problem, but has rather been tackled intuitively. In this presentation we propose a framework for analyzing such an optimization problem. Our framework is based on that the basic mechanism of measurement is reduction of uncertainty about reality. Statistical decision theory serves as the basis for analyzing decision making. In this article we apply the framework to a problem that is rather simple but of practical importance: how to arrange laboratory quality measurements optimally. In particular, we discuss a case in the paper making industry, in which the product quality is measured with automated quality analyzers and by laboratory measurements.
Słowa kluczowe
Rocznik
Strony
165--180
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • 1. Latva-Käyrä K.: Dynamic Validation of On-line Consistency Measurement. Ph.D. thesis, Tampere University of Technology, Tampere 2003.
  • 2. Grén J.: Systemizing the set and frequency of quality measurements in quality control. Diploma Thesis, Tampere University of Technology, Tampere 2006. (in Finnish).
  • 3. Raiffa H., Schlaifer R.: Applied Statistical Decision Theory. Wiley Classics Edition (2000, originally published 1960).
  • 4. Ritala R., Belle J., Holmström K., Ihalainen H., Ruiz J., Suojärvi M., Tienari M.: Operations Decision Support based on Dynamic Simulation and Optimization. Proceedings of Efficiency, PulPaper 2004, Conferences, - Energy, Coating, Efficiency, Helsinki, Finland. pp. 55-62.
  • 5. Biegler L. T., Grossmann L. E., Westerberg A. W.: Systematic Methods of Chemical Process Design. London: Prentice-Hall 1997.
  • 6. Floudas C. A., Lin X.: Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. Computers and Chemical Engineering 28, pp. 2109-2129, 2004. (and references therein)
  • 7. Morari M., Lee J. H.: Model predictive control: past present and future. Computers and Chemical Engineering 23, pp. 667-682, 2000. (and references therein)
  • 8. Jokinen H., Latva-Käyrä K., Pulkkinen P., Ritala R.: Modelling of Uncertainty: Case Studies on Operation of Papermaking Process. Proceedings MATHMOD 2006, Vienna, Austria, Feb 8-10, ARGESIM Report 30.
  • 9. French S., Rios Insua D.: Statistical Decision Theory. Kendall’s Library of Statistics, vol. 9, Arnold Publishing, 2000.
  • 10. Gärdenfors P., Sahlin N. E.: Decision, Probability and Utility - Selected Readings. Cambridge University Press, 1988.
  • 11. Von Neumann J., Morgenstern O.: Theory of Games and Economic Behaviour. Princeton University Press 1947.
  • 12. Berger J. O.: Statistical Decision Theory and Bayesian Analysis. USA, Springer 1980.
  • 13. Bernardom J. M., Smith A. F. M.: Bayesian Theory. Great Britain, Wiley 1994.
  • 14. Kahneman D., Tversky A.: Prospect theory: an analysis of decision under risk. Econometrica 47, pp. 263-291, 1979.
  • 15. Jokinen H., Ritala R.: Value assessment of measurements in large measurement information systems. Proc. of the 13th Int. Symp. on Measurements for Research and Industry Applications and the 9th European Workshop on ADC Modelling and Testing. Athens, Greece, pp. 367-372.
  • 16. Lewis F. L.: Optimal estimation: with an introduction to stochastic control theory. Wiley-Interscience, 1986.
  • 17. Grimmett G. R., Strizaker D. R.: Probability and Random Processes. Ch. 13, Oxford University Press, 2001.
  • 18. Ihalainen H., Latva-Käyrä K., Ritala R.: Dynamic validation of on-line measurements: A probabilistic analysis. Measurement 39, pp. 335-351, 2006.
  • 19. Latva-Käyrä K., Ritala R.: Sensor Diagnostics Based on Dynamic Characteristic Curve Estimation. Proc. of the 10th IMEKO TC10 International Conference, 9-10 June, 2005, Budapest, Hungary.
  • 20. Latva-Käyrä K., Ritala R.: Dynamic validation of multivariate linear soft sensors with reference laboratory measurements. In: Kappen J., Manninen J., Ritala R. (eds.) COST ACTION E36 Workshop: Modeling and simulation in pulp and paper industry. (URL:http://www.vtt.fi/inf/pdf/). pp. 57-64, 2005.
  • 21. Latva-Käyrä K., Ritala R.: Optimising a Measurement Setup for Decision Making. Proc. of IMEKO XVIII World Congress and IV Brazilian Congress of Metrology, Rio de Janeiro, Brazil. 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0028-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.