PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rankings as ordinal scale measurement results

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rankings (or preference relations, or weak orders) are sometimes considered to be non-empirical, non-objective, low-informative and, in principle, are not worthy to be titled measurements. A purpose of the paper is to demonstrate that the measurement result on the ordinal scale should be an entire (consensus) ranking of n objects ranked by m properties (or experts, or voters) in order of preference and the ranking is one of points of the weak orders space. The consensus relation that would give an integrative characterization of the initial rankings is one of strict (linear) order relations, which, in some sense, is nearest to every of the initial rankings. A recursive branch and bound measurement procedure for finding the consensus relation is described. An approach to consensus relation uncertainty assessment is discussed.
Rocznik
Strony
9--23
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Tomsk Polytechnic University, Department of Computer-aided Measurement Systems and Metrology, Russia, muravyov@camsam.tpu.ru
Bibliografia
  • 1. Cecconi P., Franceschini F., Galetto M.: Measurements, evaluations and preferences: A scheme of classification according to the representational theory. Measurement, vol. 39, pp. 1-11, 2006.
  • 2. Bryansky L. N., Doynikov A. S., Krupin B. N.: Metrology. Scales, standards, practice. Moscow, VNIIFTRI, 2004. (in Russian)
  • 3. Muravyov S. V., Savolainen V.: Special interpretation of formal measurement scales for the case of multiple heterogeneous properties. Measurement, vol. 29, pp. 209-223, 2001.
  • 4. Barthélemy J. P., Guenoche A., Hudry O.: Median linear orders: heuristics and a branch and bound algorithm. European Journal of Operational Research, vol. 42, pp. 313-325, 1989.
  • 5. Arrow K. J.: Social Choice and Individual Values. New York, Wiley 1962.
  • 6. Garey M. R. and Johnson D. S.: Computers and intractability: a guide to the theory of NP-completeness. San Francisco, W.H. Freeman and Co 1979.
  • 7. Reinelt G.: The linear ordering problem: algorithms and applications. Berlin, Heldermann 1985.
  • 8. De Donder P., Le Breton M., Truchon M.: Choosing from a weighted tournament. Mathematical Social Sciences, vol. 40, pp. 85-109, 2000.
  • 9. Kemeny J. G., Snell J. L.: Mathematical models in the social sciences. New York, Ginn 1962.
  • 10. Young H. P., Levenglick A.: A consistent extension of Condorcet's election principle. SIAM Journal of Applied Mathematics, vol. 35, no. 2, pp. 285-300, 1978.
  • 11. Wirth N.: Algorithms and data structures. Prentice-Hall, Englewood Cliffs 1986.
  • 12. Gordeev E. N., Leontyev V. K.: General approach to investigation of solution stability in discrete optimization problems. Computational Mathematics and Mathematical Physics, vol. 36, no. 1, pp. 66-72, 1996.
  • 13. Parker J. R.: Multiple Sensors, Voting Methods and Target Value Analysis. Technical Report 1998-615-06, Department of Computer Science, University of Calgary, Alberta, Canada, February 1, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0028-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.