PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A transient state analysis of gas exchange in a human body

Identyfikatory
Warianty tytułu
PL
Analiza stanów przejściowych wymiany gazowej w ciele człowieka
Języki publikacji
EN
Abstrakty
EN
A computational model of gas exchange in a human body was investigated in the transient states to determine its sensitivity to the model parameters and, on this basis, to analyse the possibility of their indirect measurement. The results indicate that some of the parameters influence the outputs significantly in the transient state and that registration of four output signals increases their number. The precision of estimation is disturbed, however, by the correlation between the output sensitivities to the model parameters. This research should be prolonged to analyse the measurement possibilities and accuracy in case of known diseases when additional information about the underlying pathological processes eliminates some of the disturbing correlations.
PL
Przeprowadzono badania symulacyjne komputerowego modelu wymiany gazowej u człowieka w warunkach stanów nieustalonych, których celem było wyznaczenie wrażliwości modelu na poszczególne jego parametry oraz analiza możliwości pośredniego ich pomiaru. Wyniki symulacji pokazują, że wartości niektórych parametrów mają istotny wpływ na wyjścia modelu w stanach nieustalonych, a rejestracja czterech sygnałów wyjściowych zwiększa ich liczbę. Czynnikiem zakłócającym dokładność pomiarów jest wysoka korelacja między większością wektorów wrażliwości. Prezentowane badania wstępne będą kontynuowane w celu przeanalizowania możliwości i dokładności pomiaru w przypadku konkretnych jednostek chorobowych, kiedy to znajomość zachodzących procesów patologicznych wyeliminuje niektóre z niepożądanych korelacji.
Rocznik
Strony
321--332
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Wrocław University of Technology, Chair of Electronic and Photonic Metrology
  • Wrocław University of Technology, Chair of Electronic and Photonic Metrology
autor
  • Wrocław University of Technology, Chair of Electronic and Photonic Metrology
Bibliografia
  • 1. Lange R. L., Horgan J. D., Botticelli J. T., Tsagaris T., Carlisle R. P., Kuida H.: Pulmonary to arterial circulatory transfer function: importance in respiratory control L Appl. Physiol., vol. 21, no. 4, 1966, pp. 1281-1291.
  • 2. Read D. J., Leigh J.: Blood-brain tissue Pco2 relationships and ventilation during rebreathing. J. Appl. Physiol., vol. 23, no. 1, 1967, pp. 53-70.
  • 3. Berkenbosch A., Heeringa J., Olievier C. N., Kruyt E. W.: Artificial perfusion of the ponto-medullary region of cats: a method for separation of central and peripheral effects of chemical stimulation of ventilation. Respir Physiol., vol. 37, no. 3, 1979, pp. 347-64.
  • 4. Hagberg J. M., Hickson R. C., Ehsani A. A., Holloszy J. O.: Faster adjustment to and recovery from submaximal exercise in the trained state. J. Appl. Physiol., vol. 48, no. 2, 1980, pp. 218-224.
  • 5. Riddle W., Younes M.: A model for the relation between respiratory neural and mechanical outputs. II. Methods. J. Appl. Physiol., vol. 51, no. 4, 1981, pp. 979-989.
  • 6. Dann S., Beersma D. G., Borbely A. A.: Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol., vol. 246, no. 2, 1984, pp. R161-R183.
  • 7. Khoo M. C. K.: A model-based evaluation of the single-breath CO2 ventilatory response test. J. Appl. Physiol. vol. 68, no. 1, 1990, pp. 393-399
  • 8. Lamarra N., Whipp B. J., Ward S. A., Wasserman K.: Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J. Appl. Physiol., vol. 62, no. 5, 1987, pp. 2003-2012.
  • 9. Babcock M. A., Paterson D. H., Cunningham D. A.: Effects of aerobic endurance training on gas exchange kinetics of older men. Med. Sci. Sports. Exerc., vol. 26, no. 4, 1994, pp. 447-452.
  • 10. ten Voorde B. J., Faes T. J. C., Janssen T. W. J., Scheffer G. J., Rompelmnn O.: Respiratory modulation of blood pressure and hear late studies with a computer model of baroreflex control. In: Di Rienzo M. et al. (Eds): Computer analysis of cardiovascular signals, ch. 9, IOS Press, 1995.
  • 11. Schuessler T. F., Gottfried S. B., Bates J. H. T.: A model of the spontaneously breathing patient: applications to intrinsic PEEP and work of breathing. J. Appl. Physiol., vol. 82, no. 5, 1997, pp. 1694-1703.
  • 12. Ursino M.: Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol., vol. 275, no. 5, 1998, pp. H1733-H1747.
  • 13. Özyener F., Rossiter H. B., Ward S. A., Whipp B. J.: Influence of exercise intensity on the on-and off-transient kinetics of pulmonary oxygen uptake in humans. J. Physiol., vol. 533, no. 3, 2001, pp. 891-902.
  • 14. Spencer J. L., Firouztale E., Mellins R. B.: Computational expressions for blood oxygen and carbon dioxide concentrations. Ann. Biomed. Eng., vol. 7, no. 1, 1979, pp. 59-66.
  • 15. Fincham W. F., Tehrani F. T.: A mathematical model of the human respiratory system. J. Biomed. Eng., vol. 5, no. 2, 1983, pp. 125-133.
  • 16. Khoo M. C. K., Gottschalk A., Pack A. I.: Sleep-induced periodic breathing and apnea: a theoretical study. J. Appl. Physiol., vol. 70, no. 5, 1991, pp. 2014-2024.
  • 17. Cavalcanti S., Belardinelli E.: Modeling of cardiovascular variability using a differential delay equation. IEEE Trans. Biomed. Eng., 1996, vol. 43, no. 10, pp. 982-989.
  • 18. Magosso E., Ursino M.: A mathematical model of CO2 effect on cardiovascular regulation. Am. J. Physiol. Heart. Circ. Physiol., vol. 281, no. 5, 2001. pp. H2036-H2052.
  • 19. Bates J. H. T., Prisk G. K., Tanner T. E., McKinnon A. E.: Correcting for the dynamic response of a respiratory mass spectrometer. J. Appl. Physiol., vol. 55, no. 3, 1983, pp. 1015-1022.
  • 20. Turner M. J., Culbert S.: Apparatus to measure the step and frequency responses of gas analysis instruments. Physiol. Measur. vol. 14, no. 3, 1993, pp. 317-326.
  • 21. Wong L., Hamilton R., Palayiwa E., Hahn C: A real-rime algorithm to improve the response time of a multigas analyser. J. Clin. Monit. Comput., vol. 14, no. 6, 1998, pp. 441-446.
  • 22. Farmery A. D., Hahn C. E. W.: Response-time enhancement of a clinical gas analyzer facilitates measurement of breath-by-breath gas exchange. J. Appl. Physiol., vol. 89, no. 2, 2000, pp. 581-589.
  • 23. Fan H.-H., Khoo M. C. K.: Respiratory Control Simulation Software PNEUMA: User’s Guide. Los Angeles, Biomedical Simulations Resource, University of Southern California 2003.
  • 24. Łabuś T.: A complex model for external respiration and its analysis. Master thesis. Wrocław University of Technology, Wrocław 2004. (In Polish)
  • 25. Polak A. G-: Indirect measurements: combining parameter selection with ridge regression. Meas. Sci. Tcchnol., vol. 12, no. 3, 2001, pp. 278-287.
  • 26. Söberg. J., Zhang Q., Ljung L., Benveniste A., Delyon B., Glorennec P.-Y., Hjalmarsson H., Juditsky A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica, vol. 31, no. 12, 1995, pp. 1691-1724.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0011-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.