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ABSTRACT: Jurassic tetrapod fossils are known from all of the continents, and their distribution documents a critical
paleobiogeographic juncture in tetrapod evolution – the change from cosmopolitan Pangean tetrapod faunas to the
provincialized faunas that characterize the late Mesozoic and Cenozoic. Two global tetrapod biochronological units
(faunachrons) have been named for the Early Jurassic – Wassonian and Dawan – and reflect some Early Jurassic
tetrapod cosmopolitanism. However, after the Dawan, a scattered and poorly-dated Middle Jurassic tetrapod record and
a much better understood Upper Jurassic tetrapod record indicate that significant provincialization of the global
tetrapod fauna had begun. Middle Jurassic tetrapod assemblages include distinct local genera of sauropod dinosaurs,
which are large, mobile terrestrial tetrapods, and this suggests marked provinciality by Bajocian time. The obvious
provincialism of well known Chinese Middle-Upper Jurassic dinosaur faunas also documents the end of tetrapod
cosmopolitanism. The distribution of some Late Jurassic dinosaur taxa defines a province that extended from 
the western USA through Europe into eastern Africa. Provincial tetrapod biochronologies have already been proposed
for this province and for the separate eastern Asian Late Jurassic province. Tetrapod footprints only identify two global
assemblage zones, one of Early Jurassic and the other of Middle-Late Jurassic age. The incomplete state of Jurassic
tetrapod biochronology reflects both an inadequate record with poor temporal constraints and a relative lack of study
of the biostratigraphy of Jurassic fossil vertebrates.

INTRODUCTION

Much effort has been expended on developing
regional and global tetrapod biochronologies for the
Triassic and Cretaceous (see reviews by Lucas
1997, 1998). However, not as much work has been
devoted to Jurassic tetrapod biochronology. Here, 
I review the status of Jurassic tetrapod biochro-
nology and suggest some patterns that are evident
and merit further investigation. 

EARLY JURASSIC

Late Triassic tetrapod assemblages show a fair
degree of cosmopolitanism across Pangea (e.g.,
Shubin and Sues 1991). Thus, for example,

phytosaurs and aetosaurs, two conspicuous groups
of Late Triassic crurotarsans, are known from
fossils found in North America, South America,
Europe, India, North Africa and Madagascar.
Indeed, some Late Triassic genera, such as the
aetosaur Stagonolepis, are known from three 
or more continents (Lucas 1998). A high degree of
cosmopolitanism of some tetrapod taxa continued
into the Early Jurassic (Shubin and Sues 1991;
Upchurch et al. 2002), with broadly similar
tetrapod assemblages known from various parts 
of Pangea (Fig. 1). 

Early Jurassic tetrapod assemblages have been
assigned to two time intervals (land-vertebrate
faunachrons, LVFs), the Wassonian and the Dawan
(Fig. 2). The Wassonian is the time between the FAD
(first appearance datum) of the crocodylomorph



Protosuchus and the beginning of the Dawan LVF
(Lucas and Huber 2003; Lucas et al. 2005; Lucas
and Tanner 2007). Protosuchus (known from
Arizona, Nova Scotia and South Africa) is the
principal index fossil of the Wassonian LVF. 

Tetrapod assemblages of Wassonian age include
those of the upper part of the Moenave Formation in
Arizona-Utah, USA (Lucas et al. 2005), the McCoy
Brook Formation in Nova Scotia, Canada (Shubin 
et al. 1994) and the middle to upper Elliot
Formation and lower Clarens Formation in South
Africa (Kitching and Raath 1984). Some of the
Jurassic fissure-fill assemblages in Great Britain
(Evans and Kermack 1994) may be of Wassonian
age, but this is not certain. 

Lucas (1996a) introduced the Dawan LVF as the
time equivalent to the vertebrate fossil assemblage
of the Lufeng Formation in southern China. 
The beginning of the Dawan is the FAD of the
theropod dinosaur Megapnosaurus (“Syntarsus”)
(known from Arizona and southern Africa with
certainty, and less certainly from China and
Europe) (Lucas and Tanner 2007). The end of the

Dawan LVF is the beginning of the next LVF
introduced by Lucas (1996a), the Dashanpuan. The
beginning of the Dasahanpuan is the FAD of the
sauropod dinosaur Shunosaurus. 

Index taxa of the Dawan include
Megapnosaurus, Dilophosaurus, Massospon-
dylus and Oligokyphus. The principal tetrapod
assemblages of Dawan age are from the Lufeng
Formation in Yunnan, China (Luo and Wu 1994),
Kayenta Formation in Arizona, USA (Curtis and
Padian 1999) and the Fallan Formation in
Antarctica (Hammer and Hickerson 1996). Some of
the British fissure-fill assemblages are of Dawan
age (they include Oligokyphus), and it is likely 
that the tetrapod assemblages of the La Boca 
Formation in Mexico (Fastovsky et al. 1995) and 
the Kota Formation of India (Bandyopadhyay and
RoyChowdhury 1996) are of Dawan age. However,
the possibility that these latter two assemblages
are younger than Dawan needs to be considered.

Palynostratigraphy, magnetostratigraphy and
radio-isotopic ages from North America indicate
the Wassonian is at least in part of Hettangian age
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Fig. 1. Map of Late Jurassic continental configuration showing principal Jurassic tetrapod fossil assemblages: 1 – Moenave-Kayenta formations,
Arizona-Utah, USA; 2 – McCoy Brook Formation, Nova Scotia; 3 – Elliott-Clarens formations, South Africa; 4 – Lufeng Formation, Yunnan, China; 
5 – La Boca Formation, Tamaulipas, Mexico; 6 – Fallan Formation, Antarctica; 7 – Kota Formation, India; 8 – various Middle Jurassic units, 
United Kingdom – France; 9 – Sichuan basin, China; 10 – Morrison Formation, western USA; 11 – various Upper Jurassic formations, 
United Kingdom – Spain – Portugal; 12 – Tendaguru Beds, Tanzania.
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(Fig. 2) (e.g., Olsen et al. 2002; Molina-Garza et al.
2003; Lucas et al. 2005; Lucas and Tanner 2007). 
It has been argued that the Dawan is as old 
as Sinemurian because the Dawan dinosaur
Scelidosaurus is known from Sinemurian marine
strata in the United Kingdom (Padian 1989; Lucas
1996b). However, the possibility that the Dawan 
is as old as Hettangian based on footprint
biostratigraphy (G. Pieƒkowski, written commun.,
2007) needs to be considered, though at present it is
not possible to discriminate distinct footprint
assemblages of Wassonian and Dawan age. Dawan
time thus equates to part of the Sinemurian, and all
of the Pliensbachian, Toarcian and possibly the
Aalenian, as the base of the Dashanpuan appears to
be Bajocian in age. The Dawan thus represents
about 25 million years of geologic time (Fig. 2). 

MIDDLE JURASSIC

Middle Jurassic tetrapod assemblages are best
known from Europe and southern China, though
scattered records are also present in North
America, South America, Africa and Australia 
(Fig. 1). No low level taxa (genera or species) are
shared between any of the continents, and it 
is striking that genera of sauropod dinosaurs, 
the largest (and presumably most mobile)
terrestrial tetrapods, are endemic to the different
continents; for example, Cetiosaurus in Europe,
Shunosaurus in China, Rhoetosaurus in Australia
and Patagosaurus in South America. This
indicates substantial provincialization of the global
terrestrial tetrapod fauna by Middle Jurassic time
(e.g., Russell 1993; Upchurch et al. 2002). 

Most of the Middle Jurassic tetrapod record
comprises low diversity assemblages dominated 
by fragmentary remains of large dinosaurs. 
Thus, North American Middle Jurassic records
include a crocodylomorph and a sauropod,
Australian records encompass theropod (Ozra-
ptor) and sauropod (Rhoetosaurus) dinosaurs,
and Middle Jurassic records from North Africa and
Madagascar are primarily of sauropod dinosaurs
(Atlasaurus, Lapparentasaurus). These are
isolated records whose correlation to each other
and to the marine timescale is problematic. 
In Argentina, the Cañodon Asfalto Formation yields
a dinosaur-dominated assemblage of theropods
(Piatnitzkysaurus) and sauropods (Patago-
saurus, Volkheimeria, etc.) that is also endemic
and of little biochronological utility. 

The European Middle Jurassic record is more
extensive and diverse; it includes amphibians,
turtles, crocodylomorphs, lepidosauromorphs,
pterosaurs, dinosaurs and mammals (e.g., Benton
and Spencer 1995; Weishampel et al. 2004). Much of
this record is in marginal marine or marine rocks
that can be correlated to the marine timescale 
(the standard global chronostratigraphic scale),
and such correlation suggests there may be two
temporally distinct tetrapod assemblages differen-
tiated by their dinosaurs, one of Aalenian-
Bathonian age, and the other of Callovian age. 

Fig. 2. Jurassic timescale (after Ogg, 2004) showing currently named
Jurassic land-vertebrate faunachrons (LVFs).
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The older assemblage is best known from the
United Kingdom (e.g., Inferior Oolite, Chipping
Norton Formation, Cotswold Slate, Forest Marble,
Stonesfield Slate, Great Oolite) and France, and
includes stegosaurs, the theropod Megalosaurus
and the sauropod Cetiosaurus. In the United
Kingdom, younger units such as the lower and
middle Oxford Clay, yield different stegosaurs
(Lexovisaurus), the ankylosaur Sarcolestes and
Megalosaurus plus different theropods, and may
represent a distinct vertebrate fauna of Callovian
age. Similar Callovian assemblages are also known
in France and Germany. Further investigation 
of the European Middle Jurassic tetrapod record 
is needed to determine if it provides the basis for
recognizing two LVFs.

However, even if two LVFs can be recognized in
the European Middle Jurassic record, they will only
be of provincial use within Europe. Lucas (1996a)
proposed two LVFs for the Middle Jurassic 
of China, and these are of value to correlation 
in eastern Asia only (Fig. 2). Note also that the 
two Jurassic “Mongolian land-vertebrate ages”
named by Jerzykiewicz and Russell (1991) lack
vertebrate characterization, so they have been
abandoned (Lucas and Estep 1998; Lucas 2001,
2006). 

The Dashanpuan LVF may encompass part of
Bajocian time based on correlations of charophytes,
ostracods, conchostracans and nonmarine bivalves
(Chen et al. 1982). It is characterized by a diverse
assemblage that includes an amphibian, turtle,
pterosaur and dinosaurs, notably the very primitive
stegosaur Huayangosaurus and the sauropods
Datousaurus and Shunosaurus. The younger
Tuojianguian LVF has been assigned a Bathonian-
Callovian age based on conchostracans (Chen et al.
1982) and is characterized by a diverse assemblage
of turtles, crocodiles and dinosaurs, most notably
the stegosaur Tuojiangosaurus, the theropods
Szechuanosaurus and Yangchuanosaurus and
the sauropods Omeisaurus and Mamenchisaurus.
Some workers (e.g., Dong et al. 1983) have
correlated the Tuojiangian to the Upper Jurassic
Morrison Formation in the western USA, but there
are no shared low-level vertebrate taxa to 
support this correlation. Nevertheless, precise
correlation of the Tuojiangian (and the Dashan-
puan) to the standard global chronostratigraphic is
tenuous.

LATE JURASSIC

Late Jurassic tetrapod assemblages (Fig. 1) are
better understood in terms of their age
relationships than are Middle Jurassic
assemblages. Thus, the classic Late Jurassic
assemblage in western North America, from the
Morrison Formation, is the characteristic
assemblage of the Comobluffian LVF of Lucas
(1993). It has long been correlated to the Tendaguru
Beds of Tanzania and to Upper Jurassic strata in
the United Kingdom, Spain and Portugal based
largely on shared dinosaur genera, such as
Allosaurus, Ceratosaurus and/or Brachiosaurus
(Lucas 1993; Mateus 2006). The broad geographic
distribution of these genera suggests a single
paleobiogeographic province that extended from
western North America through western Europe
into eastern Africa during the Late Jurassic 
(e.g., Upchurch et al. 2002).

In contrast, the well known Chinese Upper
Jurassic tetrapod assemblages are essentially
endemic at the generic level, most notably the
sauropod dinosaurs. These are tetrapods of the
Ningjiagouan LVF of Lucas (1996a) and include
uniquely Chinese taxa, such as the turtle Sinemys
and the sauropod dinosaur Euhelopus. Late
Jurassic tetrapod records, from South America and
other regions, are very poorly known.

JURASSIC TETRAPOD FOOTPRINT
BIOSTRATIGRAPHY

Dinosaur tracks dominate the global Jurassic
tetrapod footprint record, and it is a truly global
footprint record, with tracksites on all of 
the continents except Antarctica. Nevertheless, 
at the level of a global footprint biostratigraphy, 
I can only recognize two assemblages (Lucas 2007).

Early Jurassic tetrapod footprint assemblages
are dinosaur dominated. The absence of some
characteristic Late Triassic footprint ichnogenera
(especially Brachychirotherium), and the
appearance of a few characteristic Early Jurassic
ichnogenera (such as Otozoum), distinguish the
Jurassic record from the earlier Triassic record.

The classic Early Jurassic tetrapod footprint
assemblages are from the Newark Supergroup of
eastern North America. In the western United
States (especially Arizona and Utah), strata of
much of the Glen Canyon Group (upper Moenave,
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Kayenta and Navajo formations) in Arizona and
Utah yield extensive Early Jurassic tetrapod
footprint assemblages (e.g., Lockley and Hunt
1995). In the European Lower Jurassic, the
principal tetrapod footprint sites are in France,
Sweden, Hungary and Poland (e.g., Gierliƒski 1991,
1997; Gierliƒski and Ahlberg 1994; Gierliƒski and
Pieƒkowski 1999; Lockley and Meyer 2000;
Avanzini et al. 2001; Gierliƒski et al. 2001, 2004).
Like the North American Lower Jurassic, many of
these sites are theropod-footprint dominated
(ichnogenera Eubrontes and Grallator), but
include other ichnogenera such as Anomoepus and
Moyenosauripus attributed to ornithopods and
thyreophorans. In the North American and
European Lower Jurassic, sauropod tracks are
conspicuous in their virtual absence except in
northern Italy (Avanzini et al. 1997, 2003). 

Sauropod tracks are also known from the Lower
Jurassic of Morocco and Afghanistan (Ishigaki
1988; Farlow 1992). Lower Jurassic tracks are
abundant in China, and the assemblages 
are theropod dominated. Major tracksites are in 
the Fengjiahe Formation of Yunnan Province (Zhen
et al. 1986, 1989), and include Eubrontes and other
widely distributed forms (Lockley et al. 2003). 

In southern Brazil, the Botucatú Formation,
probably of Early Jurassic age (though an age as
young as Early Cretaceous has been suggested),
yields theropod and therapsid tracks (Leonardi
1981; Leonardi and Sarjeant 1986). In Australia,
Lower Jurassic tracks from Carnarvon Gorge 
in Queensland are of large theropods, small
theropods, ornithopods and thyreophorans
(Bartholomai 1966; Hill et al. 1966; Molnar 1980,
1991). 

Ellenberger (1970, 1972, 1974, 1975) described
Late Triassic-Early Jurassic footprint assemblages
from southern Africa, introducing 69 new
ichnogenera and 174 new ichnospecies, many as
nomina nuda. Olsen and Galton (1984) reviewed
the literature and published a sweeping revision of
the Early Jurassic footprint assemblages described
by Ellenberger from the upper part of the
Stormberg Group (upper Elliott and Clarens
formations and equivalents). They thus revised the
upper Stormberg footprint fauna to include
Batrachopus (crocodylomorph), theropod tracks
referable to Grallator (Anchisauripus) and
Grallator (Eubrontes), Anomoepus sp. (Ornithi-
schia), Ameghinichnus sp. (mammal or therapsid)
and the enigmatic Episcopopus ventrosus. 

I suspect that more of Ellenberger’s ichnotaxa are
valid than Olsen and Galton concede (also see
Lockley and Meyer 2000), but the important point is
that the Lower Jurassic footprint assemblages from
southern Africa are theropod dominated and
include numerous synapsid/mammal tracks.

Lockley (1993; Lockley and Hunt 1994, 1995)
identified two temporally successive footprint Early
Jurassic assemblages in the Glen Canyon Group of
the western United States, an older, Anomoepus-
Eubrontes zone (with Batrachopus) in the upper
Wingate-Moenave-lower Kayenta (Hettangian-
Sinemurian) and a younger, Otozoum-Brasili-
chnium zone in the upper Kayenta-Navajo
(Pliensbachian-Toarcian). However, according to
Rainforth (2003), Otozoum is present in Hettangian
strata of the Newark Supergroup, the Navajo
Sandstone in the western United States and the
Clarens Formation in South Africa. Lockley et al.
(2004) recently documented an occurrence in the
Wingate Sandstone of probable Hettangian age.
This means that Otozoum has a temporal range of
Hettangian through Toarcian. Batrachopus is
known from the Upper Triassic of the Newark
Supergroup (Szajna and Silvestri 1996), and, 
in addition to its Hettangian records, Eubrontes
occurs in the Navajo Sandstone (Rainforth and
Lockley 1996). Thus, currently understood
stratigraphic ranges of tetrapod footprints do not
support recognition of two Lower Jurassic footprint
zones, though there are trends in footprint size and
diversity in the Lower Jurassic strata that may
enable future biostratigraphic subdivision (Lucas
et al. 2006). Indeed, the global stratigraphic ranges
of tetrapod footprints do not support recognition of
more than one Lower Jurassic footprint zone
(Lucas 2007). 

The widespread tetrapod footprint record of the
Middle Jurassic is more sparse than those of the
Early Jurassic and the Upper Jurassic. However,
during the Middle Jurassic, the footprint record
includes larger theropod tracks (up to 77 cm long)
than did earlier records, and sauropod tracks first
become abundant and widespread (Lockley et al.
1994). The Middle and Late Jurassic footprint
record thus is a global record dominated by 
large theropod and sauropod tracks. It may 
be possible, with a more extensive Middle Jurassic
footprint record, to separate the Middle and 
Late Jurassic into separate assemblages, but for
now I combine them into a single global assem-
blage.
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Significant Middle Jurassic footprint records
are in the San Rafael Group of the western United
States, where tracksites are theropod dominated
(Lockley and Hunt 1995; Lockley et al. 1996).
Particularly noteworthy is the Moab megatracksite
in the Entrada Sandstone (Callovian) of south-
eastern Utah, which preserves many thousands of
theropod (and rare sauropod) tracks (Lockley
1991). 

In contrast, Middle Jurassic tracksites in
Portugal (Fatima) are sauropod dominated (Santos
et al. 1994). Sauropod and theropod tracksites, and
probable thyreophoran tracks (ichnogenus Delta-
podus), are known from the Middle Jurassic of
England (Whyte and Romano 1994). In China, 
a few theropod-dominated tracksites have been
reported to be Middle Jurassic (Zhen et al. 1989)
but may be older (Early Jurassic; Lockley et al.
2003). Middle Jurassic sauropod tracks are known
from Morocco (Ishigaki 1989), and theropod-
dominated tracksites are present in Santa Cruz
Province, Argentina (Leonardi 1994). Middle
Jurassic mammal tracks are very rare, and include
Ameghinichnus from Argentina (Casamiquela
1964) and Pooleyichnus (doubtfully a mammal
track) from England (Sarjeant 1975). 

Large theropod (“megalosaur”) and sauropod
tracks also dominate the Late Jurassic tetrapod
footprint record (Farlow 1992; Lockley et al. 1994,
1996). Sauropod-dominated Late Jurassic track-
sites are found in the western United States
(Lockley and Hunt 1995), Chile (Dingman and Galli
1965), Tadjikistan (Lockley et al. 1994), Spain
(Mensink and Mertmann 1984), Germany (Kaever
and Lapparent 1974), Switzerland (Meyer 1993),
Portugal (Santos et al. 1994) and Niger (Ginsburg 
et al. 1966). Large theropod tracks of Late Jurassic
age are well known from Australia, Utah, Arizona,
New Mexico, Oklahoma, Croatia, England, Spain,
Brazil and Uzbekistan (e.g., Haubold 1971; Lockley
et al. 1996; Lucas 2007). 

The lowest occurrence of pterosaur tracks is 
in Upper Jurassic rocks in the western United
States and France (Lockley and Rainforth 2002).
This could be used to distinguish between Middle
and Late Jurassic tetrapod footprint assemblages.
However, the body fossil record of pterosaurs
extends back to the Late Triassic, so it is likely that
pterosaur tracks older than Late Jurassic will be
discovered.

Lockley (1998; Lockley et al. 1996; Lockley and
Meyer 2000) has advocated some relatively precise
footprint-based Jurassic correlations. These use

the theropod ichnogenus Carmelopodus (correla-
tes Bajocian/Bathonian strata in the United States
and Europe), the theropod ichnogenus Megalo-
sauripus (correlates Oxfordian/Kimmeridgian
strata in the United States, Europe and Middle
Asia), the ornithopod ichnogenus Dinehichnus
(correlates Kimmeridgian strata in the United
States and Europe) and the enigmatic ichnogenus
Ravatichnus (correlates Bajocian strata in Europe
and Middle Asia). The correlation based on
Megalosauripus is impressive because it is
widespread and abundant. The other ichnogenera
are rare, so their stratigraphic ranges may not be
well established. Furthermore, recent discoveries
in Spain suggest that some of these characteristic
Jurassic ichnotaxa may occur in the lowermost
Cretaceous (Barco et al. 2004). Clearly, if these
correlations withstand further testing, they will be
some of the most precise correlations based on the
Jurassic tetrapod footprint record.

CONCLUSIONS

Current tetrapod biochronology of the Jurassic
provides very poor temporal resolution. The two
globally correlateable Early Jurassic LVFs
represent about 24 million years; one is about 
4 million years long, whereas the other is about 
20 million years long. Only provincial biochrono-
logical units can be recognized in the Middle and
Late Jurassic, and at most three have been
identified to encompass about 27 million years.
Thus, the Jurassic LVFs are resolving Jurassic time
less than half as well as do the Jurassic marine
stages: 11 stages vs. at most five LVFs. Footprint
biostratigraphy identifies only two intervals of
Jurassic time, Early and Middle-Late Jurassic.
Correlation of Jurassic tetrapod assemblages to 
the SGCS is also imprecise and in many cases
tenuous.

Several factors contribute to the poor state of
Jurassic tetrapod biochronology: (1) a poor record
of low diversity assemblages widely scattered
geographically, especially in the Middle Jurassic;
(2) poor temporal constraints on the Jurassic
vertebrate fossil record from other means of age
determination, such as magnetostratigraphy,
radioisotopic dates and other biostratigraphic
methods (palynostratigraphy, conchostracans); 
and (3) relatively little effort has been expended on
developing a Jurassic tetrapod biostratigraphy 
and biochronology. Further collecting, discovery
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and biostratigraphic research are thus needed to
improve our understanding of Jurassic tetrapod
biochronology.
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