PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TEM investigations of laser texturized polycrystalline silicon solar cell

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The presented in this paper research results concern investigation of phase transformation of the surface structure of polycrystalline silicon solar cell. The surface of boron doped polycrystalline silicon wafers were texturised by means of diode-pumped pulsed neodymium-doped yttrium aluminium garnet laser crystal (Nd:YAG). Investigations were carried out on transmission electron microscope (TEM) to observe the changes that occurred after laser treatment of the surface layer. Changes in microstructure of the surface layer of solar cells under the influence of the laser beam are presented using the analysis phase and dislocations present in the microstructure. Observations were carried out on prepared thin foils. Moreover, diffraction patterns from selected regions of textured wafers were solved to qualify phase transformations under influence of laser beam. Design/methodology/approach: Investigations were carried out on the Transmission Electron Microscope JEM 3010 supplied by JEOL with 300 kV accelerating voltage equipped with an electronic camera configured with a computer. The microstructure was obtained in the bright field image as well dark field working in a magnification range of 10000x to ca. 100000x. Phases identification was performed by means of selected area diffraction (SAD) method, where for diffraction pattern calculations the computer software “Eldyf” was used, kindly supplied by the Institute of Materials Science, University of Silesia. Findings: The research included analyze of the influence of laser treatment conditions on geometry, roughness and size of laser made surface texture of silicon wafer applied for solar cells. Research limitations/implications: Paper contributes to research on silicon surface processing using laser beam. Practical implications: Conducted investigations may be applied in optimisation process of solar cell surface processing. Originality/value: The range of possible applications increases for example as materials for solar cells placed on building constructions, elements in electronics and construction parts in automobile industry.
Rocznik
Strony
22--29
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
autor
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, jaroslaw.konieczny@polsl.pl
Bibliografia
  • [1] M. Raugei, P. Fullana-i-Palmer, V. Fthenakis, The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles, Energy Policy 45 (2012) 576-582.
  • [2] V.M. Fthenakis, E. Alsema, Photovoltaics Energy Payback Times, Green- house Gas Emissions and External Costs: 2004–early 2005 Status, Progress in Photovoltaics: Research and Applications 14 (2006) 275-280.
  • [3] N.H. Reich, E.A. Alsema, W.G.J.H.M. van Sark, W.C. Turkenburg, W.C. Sinke, Greenhouse gas emissions associated with photovoltaic electricity from crystalline silicon modules, Progress in Photovoltaics: Research and Applications 19/5 (2011) 603-613.
  • [4] N. Gagnon, C.A.S. Hall, L. Brinker, A preliminary investigation of the energy return on energy invested for global oil and gas extraction. Energies 2 (2009) 490-503.
  • [5] V.M. Fthenakis, M. Held, H.C. Kim, M. Raugei, Update of Energy Payback Times and Environmental Impacts of Photovoltaics. Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2009.
  • [6] V.M. Fthenakis, H.C. Kim, Photovoltaics: Life-cycle analyses, Solar Energy 85/8 (2011) 1609-1628.
  • [7] P. Denholm, R.M. Margolis, Evaluating the limits of solar photovoltaics (PV) in electric power systems, 2006.
  • [8] M.E. Meral, F. Dinc, A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems, Renewable and Sustainable Energy Reviews 15 (2011) 2176-2184.
  • [9] J. Merrill, D. Cowell Senft, Directions and Materials Challenges in High-Performance Photovoltaics, JOM 59/12 (2007) 26-30.
  • [10] M.A. Green, Recent Developments in Photovoltaics, Solar Energy 76/1-3 (2004) 3-8.
  • [11] T. Markvart, L. Castaner, Practical handbook of photo-voltaics: fundamentals and applications, Repr.-Oxford, Elsevier, 2006.
  • [12] R.W. Miles, Photovoltaic solar cell: Choice of material and production methods, Vacuum 80 (2006) 1090-1097.
  • [13] L.A. Dobrzański, Non-metallic engineering materials, Silesian University of Technology Press, Gliwice, 2008 (in Polish).
  • [14] A. Goetzbergera, C. Heblinga, H. Schock, Photovoltaic materials, history, status and outlook, Materials Science and Engineering R 40 (2003) 1-46.
  • [15] http://www.rids-nepal.org/index.php/Solar_Photo_Voltaic.html
  • [16] E.A. Alsema, M.J.D Wild-Scholten, Reduction of the environmental impacts in crystalline silicon module manufacturing, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Munich, Germany, (2007) 829-836.
  • [17] S.C. Baker-Finch, K.R. McIntosh, Reflection of normally incident light from silicon solar cells with pyramidal texture, Progress in Photovoltaics: Research and Applications, 19/4 (2011) 406-416.
  • [18] A. Scheydecker, A. Goetzberger, V. Wittwer, Reduction of reflection losses of PV-modules by structured surfaces, Solar Energy 53/2 (1994) 171-176.
  • [19] M.A. Green, Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients, Solar Energy Materials and Solar Cells 92 /11 (2008) 1305-1310.
  • [20] P. Würfel, U. Würfel, Physics of Solar Cells, From Basic Principles to Advanced Concepts, Wiley-VCH, 2009.
  • [21] L.A. Dobrzański, A. Drygała, M. Giedroć, Application of crystalline silicon solar cells in photovoltaic modules, Archives of Materials Science and Engineering 44/2 (2010) 96-103.
  • [22] L.A. Dobrzański, A. Drygała, Surface texturing of multi-crystalline silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 77-82.
  • [23] U. Gangopadhyay, S.K. Dhungel, P.K. Basu, S.K. Dutta, H. Saha, J. Yi, Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication, Solar Energy Materials and Solar Cells 91/4 (2007) 285-289.
  • [24] L.A. Dobrzański, E. Jonda, K. Labisz, M. Bonek, A. Klimpel, The comparision of tribological properties of the surface layer of the surface layer of the hot work tool steels obtained by laser alloying, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 142-147.
  • [25] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Selective laser sintering method of manufacturing front electrode of silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 111-119.
  • [26] A.D. Dobrzańska-Danikiewicz, E. Jonda, K. Labisz, Foresight methods application for evaluating laser treatment of hotwork steels, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 750-773.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0064-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.