PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of liquid phase on physical properties of the new triphasic bone cement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work was to develop a new bone cement based on hydroxyapatite (HAp), âTCP and calcium sulfate hemihydrate (CSH) and to determine the influence of a liquid phase, used for cement pastes preparation, on physical properties of the final implant material. Design/methodology/approach: The powder phase consisting of CSH (60 wt.%) and HAp+ âTCP (40 wt.%) was applied. Composite samples were prepared using distilled water, chitosan and methylcellulose solutions as the liquid phases. Rheological properties of the solutions were measured by Brookfield rheometer. Initial and final setting times of the cement pastes were determined. Phase composition of hardened bodies was established using XRD method. Microstructure was investigated by SEM while pore size distribution by mercury porosimetry. Compressive strength was measured by Instron Universal Testing Machine. Findings: According to the conducted rheological measurements of the methylcellulose and chitosan solutions as well as evaluated cement pastes and hardened bodies properties, the optimal setting liquids were chosen. Research limitations/implications: The evaluation of a biological response to the developed materials, including in vitro and in vivo experiments, need to be done. Practical implications: The possibility of creation the physical properties of setting in vivo composites, designed for filling bone defects, via establishing the suitable liquid phase was confirmed. Originality/value: The new composite type triphasic bone substitute, based on CSH, HAp and âTCP, with superior resorbability in comparison to the commercially available calcium phosphate bone cements was developed. The influence of liquid phase on the microstructure and mechanical strength of this implant material was determined.
Słowa kluczowe
Rocznik
Strony
53--59
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
  • AGH – University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland, aslosar@agh.edu.pl
Bibliografia
  • [1] W.E. Brown, L.C. Chow, Dental restorative cement pastes, US Patent no. 4518 430, 1985.
  • [2] T. Kokubo, Bioceramics and their clinical applications, Woodhead Publishing Limited, Cambridge, 2008.
  • [3] S.V. Dorozhkin, Calcium orthophosphate cements for biomedical application, Journal of Materials Science 43 (2008) 3028-3057.
  • [4] M. Bohner, Physical and chemical aspect of calcium phosphates used in spinal surgery, European Spine Journal, 10/2 (2001) 114-121.
  • [5] M. Bohner, Technological issues for development of more efficient calcium phosphate bone cements, A critical assessments, Biomaterials 26/33 (2005) 6423-6429.
  • [6] F. Bioemers, J. Stahl, M. Sarkar, W. Linhart, U. Rueckert, B. Wippermann, Bone substitution and augumentation in trauma surgery with a resorbable calcium phosphate bone cement, European Journal of Trauma and Emergency Surgery 30/1 (2004) 17-22.
  • [7] M. Bohner, Reactivity of calcium phosphate cements, Journal of Materials Chemistry 38 (2007) 3980-3986.
  • [8] M.P. Ginebra, T. Traykova, J.A. Planell, Calcium phosphate cements, Competitive drug carriers for the musculoskeletal system?, Biomaterials 27 (2006) 2171-2177.
  • [9] G. Daculsi, Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute, Biomaterials 19 (1998) 1473-1478.
  • [10] R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. LeGeros, Biphasic calcium phosphate bioceramics, Preparation, properties and applications, Journal of Materials Science: Materials in Medicine 14 (2003) 201-209.
  • [11] S.D. Langstaff, M. Sayer, T.J.N. Smith, S.M. Pugh, Resorbable bioceramics based on stabilized calcium phosphates, Part II, Evaluation of biological response, Biomaterials 22 (2001) 135-150.
  • [12] G. Daculsi, P. Weiss, J.M. Bouler, O. Gauthier, F. Millot, E. Aguado, Biphasic calcium phosphate/hydrosoluble polymer composites, A new concept for bone and dental substitution biomaterials, Bone 25/2 (1999) 59S-61S.
  • [13] I. Alam, I. Asahina, K. Ohmamiuda, S. Enomoto, Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes, Journal of Biomedical Materials Research 54 (2001) 129-138.
  • [14] X.D. Zhu, H.J. Zhang, H.S. Fan, W. Li, X.D. Zhang, Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption, Acta Biomaterialia 6 (2010) 1536-1541.
  • [15] S.F. Rosenblum, S. Frenkel, J.R. Ricci, H. Alexander, Diffusion of fibroblast growth factor from a plaster of Paris carrier, Journal of Applied Biomaterials 4 (1993) 67-72.
  • [16] G. Gomez d’Ayala, A. De Rosa, P. Laurienzo, M. Malinconico, Development of a new calcium sulfate-based composite using alginate and chemically modified chitosan for bone regeneration, Journal of Biomedical Materials Research A 81/4 (2007) 811-820.
  • [17] S.T. Maeda, C.M. Bramante, R. Taga, R.B. Garcia, I.G. De Moraes, N. Bernadineli, Evaluation of surgical cavities filled with three types of calcium sulfate, Journal of Applied Oral Science 15/5 (2007) 416-419.
  • [18] Standard Test Method for Time Setting of Hydraulic- Cement paste by Gillmore Needles, ASTM C266-04, ASTM Annual Book of standards, West Conshohocken, PA 19428- 2959, USA.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0062-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.