PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

HPDL laser alloying of heat treated Al-Si-Cu alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: There are presented in this paper the investigation results of microstructure of the cast aluminium alloys in the as cast state as well after laser treatment used for alloying with carbide and oxide ceramic powders like aluminium oxide and silicon carbide, titanium carbide, vanadium carbide and tungsten carbide. The purpose of this work was also to determine the laser treatment conditions for surface hardening of the investigation alloys, like laser power, as well the laser scan rate. Design/methodology/approach: The investigations were performed using light and electron microscopy for the microstructure determination. By mind of the transmission electron microscopy, especially selected area diffraction method appliance it was possible to determine the phases occurred in the alloy in the as cast state. The morphology and size of the Mg2Si was also possible to determine as well the lattice parameters for this phase. Findings: Concerning the laser treatment conditions for surface hardening the scan rat as well as the laser power influence was studied. It was used a power in the range between 1.0 and 2.0 kW The structure of the surface laser tray changes in a way, that there are very high roughness of the surface zone and the flatness or geometry changes in an important manner, crucial for further investigation. Research limitations/implications: The aluminium samples were examined metallographically using optical microscope with different image techniques as well as transmission electron microscope. Practical implications: Developing of new technology with appliance of Al alloys, High Power Diode Laser and diverse ceramic powders can be possible to obtain, based in findings from this research project. Some other investigation should be performed in the future, but the knowledge found in this research concerning the proper process parameters for each type of alloy shows an interesting investigation direction. Originality/value: The combination of metallographic investigation for cast aluminium alloys – including electron microscope investigation – and HPDL treatment parameters makes the investigation very attractive for automobile, aviation industry, and others where aluminium alloys plays an important role.
Rocznik
Strony
13--21
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, krzysztof.labisz@polsl.pl
Bibliografia
  • [1] A.M. Samuel, J. Gauthier, F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in Ai- Si alloys during solution heat treatment of Al2Cu phase in Ai-Si alloys during solution heat treatment, Metallurgical and Materials Transactions A 27 (1996) 1785-1798.
  • [2] A. Klimpel, High power diode laser in welding, Polish Welding review 8 (1999) 8-11 (in Polish).
  • [3] S. Yahong, H. Satoshi, Y. Masato, U. Hitoshi, T. Hironobu, Fatigue behaviour and fractography of laser-processed hot work tool steel, Vacuum 73/3-4 (2004) 655-660.
  • [4] L.J. Yang, Wear coefficient of tungsten carbide against hotwork tool steel disc with two different pin settings., Science Direct (2004) 234-240.
  • [5] K. Labisz, L.A. Dobrzański, R. Maniara, A. Olsen, Microstructure evaluation of the Al-Ti alloy with magnesium addition, Journal of Achievements in Materials and Manufacturing Engineering 47/1 (2011) 75-82.
  • [6] B. Krupińska, Z. Rdzawski, K. Labisz, Crystallisation kinetics of the Zn-Al alloys modified with lanthanum and cerium, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 154-160.
  • [7] K. Dae-Hwan, H. Seong-Hyeon, K. Byoung-Kee, Fabrication of ultrafine TaC powders by mechanochemical process, Materials Letters 58/30 (2004) 87-92.
  • [8] L.A. Dobrzański, K. Labisz, A. Klimpel, Mechanical properties and structure changes of the laser alloyed 32CrMoV12-20 steel, Journal of Achievement in Mechanical and Materials Engineering 17 (2006) 325-328.
  • [9] J. Okrajni, A. Marek G. Junak, Description of the deformation process under thermomechanical fatigue, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 15-24.
  • [10] B. Kosec, M. Brezigar, G. Kosec, J. Bernetic, M. Bizjak, Heat treatment of cold formed steel forgings for the automotive industry, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 87-90.
  • [11] M. Hamedi, Optimizing tensile strength of low-alloy steel joints in upset welding, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 341-344.
  • [12] L.A. Dobrzański, K. Labisz, M. Piec, A. Klimpel, A. Lisiecki, Influence of vanadium carbide ceramic powder on structure and properties of hot work tool steel alloyed with HPDL laser, Proceedings of the 2nd International Conference on “Manufacturing Engineering” ICMEN’2005, Kassandra-Chalkidiki, 2005, 185-191.
  • [13] J. Kusiński, J. Przybyłowicz, S. Kąc, A. Woldan, Structure and properties change In case of laser remelting of surface layers and coatings, Hutnik (1999) 14-20 (in Polish).
  • [14] X. Changqing, J. Yucheng, Y. Guangli, Effect of a single peak overload on physically short fatigue crack retardation in an axle-steel, International Journal of Fatigue 19 (1996) 201-206.
  • [15] L.A. Dobrzański, T. Tański, J. Domagała, M. Król, Sz. Malara, A. Klimpel, Structure and properties of the Mg alloys in as-cast state and after heat and laser treatment, Archives of Materials Science and Engineering 31/2 (2008) 123-147.
  • [16] S. Rusz, L. Cizek, P. Filipec, Evaluation of fatigue of microalloyed 23MnB4 steel, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 223-226.
  • [17] T. Tański, K. Labisz, J. Domagała-Dubiel, Laser modification of light alloys, Welding Review (2012) (in Polish, in print).
  • [18] K. Labisz, M. Krupiński, L.A. Dobrzański, Phases morphology and distribution of the Al-Si-Cu alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/ 2 (2009) 309-316.
  • [19] R. Filip, Laser nitriding of the surface layer of Ti6Al4V titanium alloy, Archives of Materials Science and Engineering 30/1 (2009) 25-28.
  • [20] J. Kusiński, Laser Applications in Materials Engineering, Science Publishing House „Akapit”, Cracow (2000) (in Polish).
  • [21] E. Kennedy, G. Byrne, D.N. Collins, A review of the use of high power diode lasers in surface hardening, Journal of Materials Processing Technology 155-156 (2004) 1855-1860.
  • [22] A. Lisiecki, A. Klimpel, Diode laser surface modification of Ti6Al4V alloy to improve erosion wear resistance, Archives of Materials Science and Engineering 32/1 (2008) 5-12.
  • [23] Y.S. Tian, C.Z. Chen, D.Y. Wang, Q.H. Huo, T.Q. Lei, Laser surface alloying of pure titanium with TiN-B-B-Si-Ni mixed powders, Applied Surface Science 250 (2005) 223-227.
  • [24] E.F. Horst, B.L. Mordike, Magnesium technology. metallurgy, design data, application, Springer-Verlag, Berlin Heidelberg, 2006.
  • [25] Z. Górny, J. Sobczak, Non-ferrous metals based novel materials in foundry practice, ZA-PIS, Cracow, 2005 (in Polish).
  • [26] A. Fajkiel P. Dudek, G. Sęk-Sas, Foundry engineering XXI c, Directions of metallurgy development and Ligot alloys casting, Publishers Institute of Foundry engineering, Cracow, 2002 (in Polish).
  • [27] L.A. Dobrzański, M. Krupiński, K. Labisz, Z. Rdzawski, Influence of thermo-derivative analysis conditions on microstructure and mechanical properties, Archives of Foundry Engineering 11/2 (2011) 19-22.
  • [28] S. Yingwei, S. Dayong, Ch. Rongshi, H. En-Hou, Corrosion characterization of Mg-8Li alloy in NaCl solution, Corrosion Science 51/5 (2009) 1087-1094.
  • [29] G. Lili, Z. Chunhong, Z. Milin, H. Xiaomei, S. Nan, The corrosion of a novel Mg–11Li–3Al–0.5RE alloy in alkaline NaCl solution, International Journal of Alloys and Compounds 468/1-2 (2009) 285-289.
  • [30] L.A. Dobrzański, Sz. Malara, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloys with silicon carbide powder, Archives of Materials Science and Engineering 35/1 (2009) 54-60.
  • [31] Y. Issshiki, K. Mizumoto, M. Hashimoto, Synthesis of iron - tungsten alloy on mild steel by laser surface alloying, Thin Solid Films 317 (1998) 468-470.
  • [32] S.W. Shieh, S.J. Huang, L. Li, Fuzzy logic control for the Ti6A14V laser alloying process, The International Journal of Advanced Manufacturing of Technology 18 (2001) 247-253.
  • [33] L.A. Dobrzański, J. Domagała, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloy with WC and TiC powders using HPDL, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 179-186.
  • [34] M. Krupiński, K. Labisz, Z. Rdzawski, M. Pawlyta, Cooling rate and chemical composition influence on structure of Al- Si-Cu alloys, Journal of Achievements in Materials and Manufacturing Engineering 45/1 (2011) 13-22.
  • [35] K. Labisz, L.A. Dobrzański, R. Maniara, A. Olsen, Microstructure evaluation of the Al-Ti alloy with magnesium addition, Journal of Achievements in Materials and Manufacturing Engineering 47/1 (2011) 75-82.
  • [36] M. Bilewicz, J.C. Viana, A.M. Cunha, Non-conventional Injection Moulding of a PP/PC-ABS Blend, Trans Tech Publications, Materials Science Forum 514-516 (2006) 858-862.
  • [37] T. Tański, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, The 14th International Conference on Electron Microscopy, Solid State Phenomena 186 (2012) 192-197.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0060-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.