PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effects of cryogenic cooling on surface layer characteristics produced by hard turning

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this research is to test the applicability of cryogenic hard machining for improving surface integrity produced in turning operations on parts made of high-strength, low alloy 41Cr4 steel with hardness of 57š2 HRC. The aim of the research is to quantify the surface roughness and the mechanical properties of the sublayer produced under practical working conditions. Design/methodology/approach: The objectives were achieved by the characterization of machined surfaces using 2D and 3D scanning techniques. The surface profile and surface topographies were characterized and compared for optimal machining conditions. Moreover, microhardness beneath the surface was measured using a hardness tester with a Berkovich indenter. The microstucture of the sublayer was examined using SEM/EDS technique. Findings: This investigation confirms that hard machining allows producing surfaces with acceptable surface roughness and, in some cases, with attractive service properties. The main conclusion is that cryogenic hard cutting operations can partly eliminate grinding operations in cases when white layer is not produced. Research limitations/implications: The basic limitations concern the measurement of residual stresses and microstructural alterations including phase analysis. Another important problem is to optimize the surface integrity including surface roughness and sublayer properties. Practical implications: One practical outcome is selecting the machining conditions which guarantee the demanded surface finish together with bearing properties. Moreover, they should be selected in terms of desired microhardness distribution. Originality/value: Original value of the paper is the presentation of the effects of cryogenic pre-cooling of the workpiece in hard turning operations. Experiments were performed under the conditions combining low surface roughness with attractive service properties. This knowledge can support the design of technological processes of hard steel parts.
Rocznik
Strony
6--12
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
autor
autor
  • Department of Manufacturing Engineering and Production Automation, Opole University of Technology, P.O. Box 321, 45-271 Opole, Poland
Bibliografia
  • [1] W. Grzesik, Advanced Machining Processes of MetallicMaterials, Elsevier, Amsterdam, 2008.
  • [2] G. Byrne, D. Dornfeld, B. Denkena, Advancing cutting technology, Annals of the CIRP 52/2 (2003) 483-507.
  • [3] F. Klocke, E. Brinksmeier, K. Weinert, Capability profile of hard cutting and grinding processes, Annals of the CIRP 54/2 (2005) 557-580.
  • [4] W. Grzesik, J. Rech, T. Wanat, Surface integrity of hardened steel parts in hybrid machining operations, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 367-370.
  • [5] W. Grzesik, K. Żak, Modification of surface finish produced by hard turning using superfinishing and burnishing operations, Journal of Materials Processing Technology 212 (2012) 315-322.
  • [6] Z. Zhao, S.Y. Hong, Cooling strategies for cryogenic machining from a materials viewpoint, Journal of Materials Engineering and Performance 1/5 (1992) 669-678.
  • [7] F. Pusavec, P. Krajnik, J. Kopac, Transitioning to sustainable production-Part I: application on machining technologies, Journal of Cleaner Production 18 (2010) 174-184.
  • [8] F. Pusavec, D. Kramar, P. Krajnik, J. Kopac, Transitioning to sustainable production-part II: evaluation of sustainable machining technologies, Journal of Cleaner Production 18 (2010) 1121-1221.
  • [9] S.Y. Hong, Y. Ding, Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V, International Journal of Machine Tools and Manufacture 41 (2001) 1417-1437.
  • [10] S.Y. Hong, Y. Ding, R.G. Ekkens, Improving low carbon steel chip breakability by cryogenic chip cooling, International Journal of Machine Tools and Manufacture 39 (1999) 1065-1085.
  • [11] N.R. Dhar, S. Paul, A.B. Chattopadhyay, The influence of cryogenic cooling on tool wear, dimensional accuracy and surface finish in turning AISI 1040 and E4340C steels, Wear 249 (2002) 932-942.
  • [12] F. Pušavec, E. Govekar, J. Kopac, I.S. Jawahir, The influence of cryogenic cooling on process stability in turning operations, CIRP Annals-Manufacturing Technology 60/1 (2011) 101-104.
  • [13] Y. Yildiz, M. Nalbant, A review of cryogenic cooling in machining processes, International Journal of Machine Tools and Manufacture 48 (2008) 947-964.
  • [14] J. Kopac, Achievements of sustainable manufacturing by machining, Journal of Achievements in Materials and Manufacturing Engineering 34/2 (2009) 180-187.
  • [15] H.A. Kishawy, A. Haglund, M. Balazinski, Modelling of material side flow in hard turning, Annals of the CIRP 55/1 (2006) 85-88.
  • [16] Z. Zurecki, R. Ghosh, J.H. Frey, Investigation of white layer formed in conventional and cryogenic hard turning of steels, Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition IMECE’03, Washington, DC, 2003, 1-10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0060-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.