PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neural networks aided future events scenarios presented on the example of laser surface treatment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to present a methodological concept allowing to demonstrate the development directions of materials surface engineering according to the level of generality and the intensity of the phenomena analysed on other phenomena. Design/methodology/approach: A set of analytical methods and tools was used to present the development directions of materials surface engineering at the three levels analysed, i.e.: a macro-, meso- and microlevel. The analytical methods and tools comprise the scenario method, artificial neural networks, Monte Carlo method, e-Dephix method, statistical lists as bar charts, foresight matrices together with technology development tracks, technology roadmaps, technology information sheets and the classical materials science methods. Findings: A research methodology allowing to combine a presentation and description of the forecast future events having a varied level of generality and capturing the cause and effect relationships existing between the events. Research limitations/implications: The methodological concept discussed, implemented with reference to materials surface engineering, has a much broader meaning, and can be successfully applied in other technology foresights, and also in industrial and thematic foresights after minor modifications. Practical implications: The outcomes of the research conducted may be and should be used in the process of creating and managing the future of materials surface engineering and, within the time horizon of 20 years, may and should influence positively the development of the economy based on knowledge and innovation, sustainable development and the statistical level of the technologies used in industry, especially in small- and medium-sized enterprises. Originality/value: An own methodological concept constitutes an original way of presenting the development directions of the investigated field of knowledge. The use of neural networks
Rocznik
Strony
69--96
Opis fizyczny
Bibliogr. 68 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] K. Czaplicka, N. Howaniec, A. Smoliński, Creation of scenarios for technology foresight. Literature review, www.polska2020.pl/cms/pl/publications (in Polish).
  • [2] Technology foresight, Vol. 1. Organisation and methods. Manual, Innovations Series, Polish Agency for Enterprise Development, Unido, www.polska2020.pl/cms/pl/publications /artykuly/022.html (in Polish).
  • [3] R. Popper, How are foresight methods selected?, Foresight 10/6 (2008) 62-89.
  • [4] M. Keenan, R. Popper, Comparing foresight "style" in six Word regions, Foresight 10/6 (2008) 16-38.
  • [5] Evaluation examination of the foresight projects implemented in Poland. The expert opinion made under agreement No. 118/DS./2010 of 30.07.2010 concluded between the State Treasury – Ministry of Science and Higher Education and the Technical University of Białystok, www.mnisw.gov.pl (in Polish).
  • [6] FORSURF, Foresight of surface properties formation leading technologies of engineering materials and biomaterials, www.forsurf.pl (in Polish).
  • [7] M. Lindgren, H. Bandhold, Scenario Planning – Revised and Updated Edition: The Link Between Future and Strategy, Palgrave Macmillan, 2009.
  • [8] R. Bradfield, G. Wright, G. Burt, G. Cairns, K. van der Heijden, The origins and evolution of scenario techniques in long range business planning, Futures37 (2005) 795-812.
  • [9] P.W.F. van Notten, J. Rotmans, M.B.A. van Asselt, D.S. Rotman, An updated scenario typology, Futures35 (2003) 423-443.
  • [10] P. Heugens, J. van Oesterhout, To boldly go where no man has gone before: integrating cognitive and physical features in scenario studies, Futures 33 (2001) 861-872.
  • [11] A. Martelli, Scenario building and planning: state of arts and prospects of evolution, Futures Research Quarterly Summer (2001) 55-70.
  • [12] A.D. Dobrzańska-Danikiewicz, Computer Aided Foresight Integrated Research Methodology in Surface Engineering Area, work in progress.
  • [13] A.D.Dobrzańska-Danikiewicz, E. Jonda, K. Labisz, Foresight methods application for evaluating laser treatment of hot-work steels, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 750-773.
  • [14] A.D. Dobrzańska-Danikiewicz, T. Tański, S. Malara, J. Domagała-Dubiel, Assessment of strategic development perspectives of laser treatment of casting magnesium alloys, Archives of Materials Science and Engineering 45/1 (2010) 5-39.
  • [15] A.D. Dobrzanska-Danikiewicz, K. Lukaszkowicz, Technology validation of coatings deposition onto the brass substrate, Archives of Materials Science and Engineering 46/1 (2010) 5-38.
  • [16] A.D. Dobrzańska-Danikiewicz, E. Hajduczek, M. Polok-Rubiniec, M. Przybył, K. Adamaszek, Evaluation of selected steel thermochemical treatment technology using foresight methods, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 115-146.
  • [17] A.D. Dobrzańska-Danikiewicz, K. Gołombek, D. Pakuła, J. Mikuła, M. Staszuk, L.W. Żukowska, Long-term development directions of PVD/CVD coatings deposited onto sintered tool materials, Archives of Materials Science and Engineering 49/2 (2011) 69-96.
  • [18] A.D. Dobrzańska-Danikiewicz, A. Drygała Strategic development perspectives of laser processing on polycrystalline silicon surface, Archives of Materials Science and Engineering 50/1 (2011) 5-20.
  • [19] A.D. Dobrzańska-Danikiewicz, A. Kloc-Ptaszna, B. Dołżańska, Manufacturing technologies of sintered graded tool materials evaluated according to foresight methodology, Archives of Materials Science and Engineering 50/2 (2011) 69-96.
  • [20] A.D. Dobrzańska-Danikiewicz, K. Lukaszkowicz, Techno-logy strategic development directions of PVD coatings deposition onto the brass substrate, Inżynieria Materiałowa 4 (2011) 558-561 (in Polish).
  • [21] CBP Netherlands Bureau for Economic Policy Analysis, Globalization, International Transport and the Global Environment: four quantitative scenarios, Hague, The Nether-lands, 1999.
  • [22] L. Borjeson, M. Hojer, K.-H. Dreborg, T. Ekvall, G. Finnveden, Towards a user’s Guide to Scenarios. A report on scenario types and scenario techniques, Royal Institute ofvtechnology, Sweden, 2005, www.infra.kth.se/fms.
  • [23] L.A. Dobrzański, J. Trzaska, Application of Neural Networks for Prediction of Hardness and Volume Fractions of Structural Components in Constructional Steels Cooled fromvthe Austenitizing Temperature, Materials Science Forum 437-438 (2003) 359-362.
  • [24] L. Rutkowski, Artifical inteligence methods and techniques, PWN, Warsaw, 2006 (in Polish).
  • [25] S. Osowski, Neural networks in terms of algorithmic, WNT, Warsaw, 1996 (in Polish).
  • [26] L.A. Dobrzański, J. Trzaska, Application of neural networks for the prediction of continous cooling transformation diagrams, Computational Materials Science 30/3-4 (2004)v251-259.
  • [27] R. Tadeusiewicz, Elementary introduction to neural network techniques with exemplary programs, Academic Publishing House PLJ, Warsaw, 1998 (in Polish).
  • [28] L.A. Dobrzański, J. Trzaska, Application of neural networks to forecasting the CCT diagram, Journal of Materials Processing Technology 157-158 (2004) 107-113.
  • [29] T Wieczorek, Neural modeling of technological processes, Silesian University of Technology Publishing, Gliwice, 2008 (in Polish).
  • [30] L.A. Dobrzański, J. Trzaska, Application of neural networks for prediction of critical values of temperatures and time of the supercooled austenite transformations, Journal of Materials Processing Technology 155-156 (2004) 1950-1955.
  • [31] J. Trzaska, L.A. Dobrzański, Application of neural networks for designing the chemical composition of steel with the assumed hardness after cooling from the austenitising temperature, Journal of Materials Processing Technology 164- 165 (2005) 1637-1643.
  • [32] J. Trzaska, L.A. Dobrzański, Modelling of CCT diagrams for engineering and constructional steels, Journal of Materials Processing Technology 192-193 (2007) 504-510.
  • [33] R. Zieliński, Monte Carlo methods, WNT, Warsaw, 1970 (in Polish).
  • [34] A. Janicki, A. Izydorczyk, Computer methods in stochastic modeling, WNT, Warsaw, 2001 (in Polish).
  • [35] A. Dobrzańska-Danikiewicz, E-foresight of materials surface engineering, Archives of Materials Science and Engineering 44/1 (2010) 43-50.
  • [36] A.D. Dobrzańska-Danikiewicz, Foresight methods for technology validation, roadmapping and development in the surface engineering area, Archives of Materials Science and Engineering 44/2 (2010) 69-86.
  • [37] The Boston Consulting Group, The Product Portfolio, Perspectives 66, 1970.
  • [38] L.A. Dobrzański, K. Labisz, A. Klimpel, Mechanical properties and structure changes of the laser alloyed 32CrMoV12-20 steel, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 325-328.
  • [39] B. Major, R. Ebner, Constitution of the surface layer of metal materials through laser processing, Surface Engineering 1 (1996) 53-65 (in Polish).
  • [40] L.A. Dobrzański, Metal engineering materials, WNT, Warsaw, 2004 (in Polish).
  • [41] J.T.M. De Hosson, V. Ocelik, Functionally Graded Materials Produced with High Power Lasers, Materials Science Forum 426-432 (2003) 123-130.
  • [42] F. Vollertsen, K. Partes, J. Meijer, State of the art of Laser Hardening and Cladding, Proceedings of the 3th International WLT – Conference on Lasers in Manufacturing, Munich, 2005, 783-792.
  • [43] F. Bachmann, Industrial applications of high power diode lasers in materials processing, Applied Surface Science 208- 209 (2003) 125-136.
  • [44] A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, The study of properties of Ni-W2C and Co-W2C powders thermal sprayed deposits, Journal of Materials Processing Technology 164-165 (2005) 1068-1073.
  • [45] W. Xiaolei, In situ formation by laser cladding of TiC composite coating with a gradient distribution, Surface and Coatings Technology 115/2 (1999) 111-115.
  • [46] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser, Applied Surface Science 247/1-4 (2005) 328-332.
  • [47] L.A. Dobrzański, M. Bonek, E. Hajduczek, K. Labisz, M. Piec, E. Jonda, A. Polok, Structure and properties of laser alloyed gradient surface layers of the hot-work tool steels, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 148-169.
  • [48] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, Journal of Materials Processing Technology 191/1-3 (2007) 321-325.
  • [49] Z. Tao, Microstructure of Ni/WC laser gradient coating on cast Al-Si alloy, Journal of Shanghai Jiaotong University 36/1 (2002) 203-208.
  • [50] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, A. Lisiecki, Application of high power diode laser (HPDL) for alloying of X40CrMoV5-1 steel surface layer by tungsten carbides, Journal of Materials Processing Technology 155-156 (2004) 1956-1963.
  • [51] S. PalDey, S.C. Deevi, Properties of single layer and gradient (Ti,Al)N coatings, Materials Science and Engineering A 361 (2003) 1-8.
  • [52] A. Klimpel, Laser technologies in welding, Silesian University of Technology Publishing, Gliwice, 2011 (in Polish).
  • [53] I. Yadroitsev, P. Bertrand, B. Laget, I. Smurov, Application of laser assisted technologies for fabrication of functionally graded coatings and objects for the International Thermonuclear Experimental Reactor components, Journal of Nuclear Materials 362/2-3 (2007) 189-196.
  • [54] S. Barnes, N. Timms, B. Bryden, High power diode laser cladding, Journal Material Processing Technology 138 (2003) 411-416.
  • [55] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, A. Lisiecki, Comparison of the structures of the hot-work tool steels laser modified surface layers, Journal of Materials Processing Technology 164-165 (2005) 1014-1024.
  • [56] A. Klimpel, A. Lisiecki, D. Janicki, The influence of the shielding gas on the properties of a laser-melted surface of austenitic stainless steel, Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture 218/B (2005) 1137-1144.
  • [57] J. Kusiński, Wear properties of T15 PM HSS made index-able inserts after laser surface melting, Journal of Materials Processing Technology 64 (1997) 239-246.
  • [58] J. Mateos, J.M. Cuetos, E. Fernandez, R. Vijande, Tribological behaviour of plasma sprayed WC coatings with and without laser remelting, Wear 239 (2000) 274-281.
  • [59] L.A. Dobrzański, K. Labisz, M. Piec, J. Lelątko, A. Klimpel, Structure and Properties of the 32CrMoV12-28 Steel Alloyed with WC Powder using HPDL Laser, Materials Science Forum 530-531 (2006) 334-339.
  • [60] L.A. Dobrzański, M. Bonek, A. Klimpel, A. Lisiecki, Surface-Layer’s Structure of X40CrMoV5-1 Steel Remelted and/or WC Alloyed with HPDL Laser, Materials Science Forum 437-438 (2003) 69-72.
  • [61] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Structure and properties of laser alloyed surface layers on the hot-work tool steel, Journal of Materials Processing Technology 175 (2006) 45-54.
  • [62] L.A. Dobrzański, J. Mazurkiewicz, E. Hajduczek, Effect of thermal treatment on structure of newly developed 47CrMoWVTiCeZr16-26-8 hot-work tool steel, Journal of Materials Processing Technology 157-158 (2004) 472-484.
  • [63] L.A. Dobrzański, J. Mazurkiewicz, E. Hajduczek, J. Madejski, Comparison of the thermal fatigue resistance and structure of the 47CrMoWVTiCeZr16-26-8 hot-work tool steel with X40CrMoV5-1 type one, Journal of Materials Processing Technology 113 (2001) 527-538.
  • [64] T. Hejwowski, Wear resistance of graded coatings, Vacuum 65 (2002) 515-520.
  • [65] T.R. Jervis, M. Nastasi, A.J. Griffin, T.G. Zocco, T.N. Taylor, S.R. Foltyn, Tribological effects of excimer laser processing of tool steel, Surface and Coatings Technology 89 (1997) 158-164.
  • [66] S. Żółkiewski, Dynamic flexibility of the supported-clamped beam in transportation, Journal of Vibroengineering 13/4 (2011) 810-816.
  • [67] L.A. Dobrzański, A. Polok, E. Jonda, Structure and properties of surface layers obtained by alloying of the hot work tool steels, Journal of Achievements in Materials and Manu-facturing Engineering 17 (2006) 329-332.
  • [68] L.A. Dobrzański, M. Bonek, M. Piec, E. Jonda, Diode Laser Modification of Surface Gradient Layer Properties of a Hot-work Tool Steel, Materials Science Forum 532-533 (2006) 657-660.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0055-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.