PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of fluorides on bioactivity of titania nanotubes in SBF solution – by EIS studies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: The influence of fluorides concentration in anodizing electrolyte on deposition of calcium phosphates Ca-O-P on titania nanotubes immersed in simulated body fluid (SBF) has been examined. Design/methodology/approach: The electrochemical impedance spectroscopy (EIS) was used to monitor the process of deposition of calcium phosphates on titanium foils covered with titania nanotubes formed by anodizing in 1 M H3PO4 with various amounts of fluorides ranging from 0.2 wt% to 0.4 wt%. The changes in impedance characteristics combined with results of SEM and EDS analyses were used to evaluate the bioactivity of nanotubes in SBF and find out the relation between the morphology of deposits and the concentration of fluorides in the anodizing electrolyte. Findings: The obtained results confirmed that titania nanotubes strongly favour the deposition of calcium phosphates (HAp) during the first 24 hours. However, the behavior of titania nanotubes formed in the electrolytes of various fluoride content differ afterwards when immersed longer in SBF solution. Particularly, contrary to other samples, the amount of deposits on nanotubes formed in 1 M H3PO4+0.30% wt. HF decreases significantly about 72 hours after immersing and these observations are recorded by both the SEM/EDS examination and XPS results. The corresponding changes in impedance parameters are noticed. Practical implications: Development of the method to cover titanium implant materials with nanoporous anodic layer, enriched in phosphates and fluorides- both ions highly supporting bioactivity, enables new applications in implantology and biosensing. Originality/value: Bioactivity is highly desirable property of implant materials. The phenomena observed during immersion in SBF solution by the Electrochemical Impedance Spectroscopy are related to the amount of fluorine in titania nanotubes. The explanation of this behavior and its consequence to bioactivity is proposed.
Rocznik
Strony
33--39
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
autor
Bibliografia
  • [1] R. Van Noort, Titanium: the implant material of today, Journal of Material Science 22 (1987) 3801-3811, rev. 2005.
  • [2] M.V. Oliveira, L.C. Pereira, C.A.A. Cairo, Porous structure characterization in titanium coating for surgical implants, Materials Research 5 (2002) 269-273.
  • [3] M. Bram, H. Schiefer, D. Bogdanski, M. Köller, H.P. Buchkremer, D. Stöver, Implant surgery: how bone bonds to PM titanium, Metal Powder Report 61 (2006) 26-31.
  • [4] S.A. Brown, J.E. Lemons (ed.), Medical applications of titanium and its alloys, ASTM International, 1996.
  • [5] S.C.P. Cachinho, R.N. Correia, Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour, Journal of Materials Science. Materials in medicine 19 (2008) 451-457.
  • [6] I.-H. Oh, N. Nomura, N. Masahashi, S. Hanada, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia 49 (2003) 1197-1202.
  • [7] M. Zhang, Y. Bando, K. Wada, Sol-gel template preparation of TiO2 nanotubes and nanorods, Journal of Materials Science Letters 20 (2001) 167-170.
  • [8] W.-J. Lee, M. Alhoshan, W.H. Smyrl, Titanium dioxide nanotube arrays fabricated by anodizing processes, Journal of the Electrochemical Society 153 (2006) B449-B505.
  • [9] G.K. Mor, O. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes, Fabrication of tapered, conical-shaped titania nanotubes, Journal of Materials Research 18 (2003) 2588-2593.
  • [10] J. Zhao, X. Wang, R. Chen, L. Li, Fabrication of titanium oxide nanotube arrays by anodic oxidation, Solid State Communications 134 (2005) 705-710.
  • [11] L. Taveira, J. Macak, H. Tsuchiya, L. Dick, P. Schmuki, Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes, Journal of Electrochemical Society 152 (2005) B405-B410.
  • [12] Y. Park, K. Shin, H. Song, Effects of anodizing conditions on bond strength of anodically oxidized film to titanium substrate, Applied Surface Science 253 (2007) 6013-6018.
  • [13] P. Xiao, B.B. Garcia, Q. Guo, TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing, Electrochemistry Communications 9 (2007) 2441-2447.
  • [14] E. Krasicka-Cydzik, I. Głazowska, A. Kaczmarek, K. Białas-Heltowski, Scan rate effect on the anodic growth of self-aligned titanium dioxide nanotubes, Engineering of Biomaterials 77-80 (2008) 48-51.
  • [15] E. Krasicka-Cydzik, I. Głazowska, A. Kaczmarek, K. Białas-Heltowski, Fluoride concentration effect on the anodic growth of self-aligned titanium dioxide nanotubes, Engineering of Biomaterials 77-80 (2008) 46-48.
  • [16] H.-J. Oh, J.-H. Lee, Y.-J. Kim, S.-J. Suh, Surface characteristics of porous anodic TiO2 layer for biomedical applications, Materials Chemistry and Physics 109 (2008) 10-14.
  • [17] J.E.G. Gonzalez, J.C. Mirza-Rosca, Study of the corrosion behaviour of titanium and some of its alloys for biomedical and dental implant applications, Journal of Electroanalytical Chemistry 471 (1999) 109-115.
  • [18] W.C. Say, C.C. Chen, Y.H. Shiu, Monitoring the effects of growing titania nanotubes on titanium substrate by Electrochemical Impedance Spectroscopy measurement, Japanese Journal of Applied Physics 48 (2009) 035004.
  • [19] http://mswebs.naist.jp/LABs/tanihara/ohtsuki/SBF/index.html (components of usedSBF).
  • [20] H. Habazuki, K. Fushimi, K. Shimizu, P. Skeldon, Fast migration of fluoride ions in growing anodic Titanium oxide, Electrochemistry Communications 9 (2007) 1222-1227.
  • [21] A. Slósarczyk, Biocybernetics and biomedical engineering, vol. 4 Biomaterials, eds.: S. Błażewicz, L. Stoch, Exit, Warsaw, 2003 (in Polish).
  • [22] A. Slósarczyk, Hydroxyapatite ceramics, PTC, Kraków, 1997 (in Polish).
  • [23] H.-J. Oh, K.-W. Jang, C.-S. Chi, Impedance characteristics of oxide layers an aluminium, Bulletin of the Korean Chemical Society 20 (1999) 1340-1344.
  • [24] E. Krasicka-Cydzik, K. Kowalski, K. Kaczmarek, I. Głazowska, K. Białas-Heltowski, Competition between phosphates and fluorides at anodic formation of titania nanotubes on titanium, Surface and Interface Analysis 42 (2010) 471-474.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0053-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.