Identyfikatory
Warianty tytułu
The identification of proteins by Peptide Mass Fingerprinting (PMF). Part I - properties of the identification experiment
Języki publikacji
Abstrakty
Wprowadzenie w spektrometrach jonizacji typu MALDI zrewolucjonizowało proces identyfikacji białek. Automatyzacja procesu identyfikacji oraz bezpośrednie połączenie analizy spektrometrem masowym z separacją białek dwuwymiarową elektroforezą żelową (2D-GE) pociągnęły za sobą znaczny rozwój proteomiki. Późniejszy rozrost proteomicznych baz danych pozwolił na zwiększenie dokładności identyfikacji, z wykorzystaniem pierwszej w historii techniki wydajnej identyfikacji białek – peptide mass fingerprinting, w skrócie: PMF. Metoda peptide mass fingerprinting pozwala identyfikować białka z widm masowych uzyskanych w wyniku analizy próbki spektrometrem masowym. Przez wzgląd na powszechność stosowania metody, jak i ciągle obserwowane jej ulepszenia, autorzy postanowili podsumować obecny stan wiedzy w tym zakresie. Praca została podzielona na dwie części: w pierwszej znajduje się opis historii powstania metody PMF wraz z charakterystyką części eksperymentalnej i opisem najpopularniejszych baz danych stosowanych przy identyfikacji, natomiast druga część pracy jest poświęcona zagadnieniom algorytmicznym, związanym z wyszukiwaniem w bazie danych protein najlepiej odzwierciedlających białko analizowane w próbce. Specyfikacja eksperymentu w pierwszej części pracy uwzględnia zarówno opis metody separacji, trawienia białek w próbce, jak i późniejszej ich analizy z wykorzystaniem spektrometru masowego. Eksperymentalne fazy metody PMF są opisane z uwzględnieniem ich cech biochemicznych, mających wpływ na dalsze etapy schematu identyfikacji.
The development of MALDI ionization method in mass spectrometers, had revolutionized the protein identification procedure. The automation of an identification procedure and the mass spectrometry direct connection to the protein separation with the two-dimensional gel electrophoresis (2D-GE) implicated the significant proteomics development. The later growth of the proteomics databases contributed to the enhancement of the identification accuracy, by using the first method of effective protein identification in the history: the peptide mass fingerprinting (PMF). The peptide mass fingerprinting enabled the protein identification from the mass spectra acquired by the mass spectrometry sample analysis. Due to the common use of method and its continuous improvements, the authors decided to summarize the current state of the knowledge in this field of science. The publication is divided into two parts. The first one is devoted to the origins of PMF scheme, the characteristics of its experimental part and a description of the most popular databases used in the identification procedure. The second part relates to the algorithmic issues of searching the database protein, which reflects the sample content in the best way. The experiment specification in the first part takes into the consideration the description of separation and sample digestion methods, as well as the later protein sample analysis by the mass spectrometer. The experimental steps of the PMF method are described according to their biochemical properties, having an impact for the later stages of the identification procedure.
Wydawca
Rocznik
Tom
Strony
153--160
Opis fizyczny
bibliogr. 73 poz.
Twórcy
autor
autor
- Instytut Inżynierii Biomedycznej i Pomiarowej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, tel. +48 71 320 28 25, hanna.kaminska@pwr.wroc.pl
Bibliografia
- 1. I. Eidhammer, K. Flikka, L. Martens, S. O. Mikalsen: Computational methods for mass spectrometry proteomics, ch. 1.3, 1st ed., Chichester: Wiley-Interscience 2008, s. 6-118.
- 2. W.J. Henzel, C. Watanabe, J.T. Stults: Protein identification: The origins of peptide mass fingerprinting, Journal of the American Society for Mass Spectrometry, vol. 14, 2003, s. 931-942.
- 3. P. Edman: Method for determination of the amino acid sequence in peptides, Acta chem. scand, vol. 4, 1950, s. 283-293.
- 4. A.E. Ashcroft: Protein and peptide identification: the role of mass spectrometry in proteomics, Natural Product Reports, vol. 20, 2003, s. 202-215.
- 5. A. Gooley, K. Ou, J. Russell, M. Wilkins, J. Sanchez, D. Hochstrasser, K. Williams: A role for Edman degradation in proteome studies, Electrophoresis, vol. 18(7), 1997, s. 1068-1072.
- 6. M. Barber, R. Bordoli, R. Sedgwick, A. Tyler: Fast atom bombardment of solids as an ion source in mass spectrometry, Nature, vol. 293(5830), 1981, s. 270-275.
- 7. W. J. Henzel, J. T. Stults, C. Watanabe: Proceedings of the third symposium of the protein society, Seattle 1989.
- 8. J. Fenn, M. Mann, C. Meng, S. Wong: Electrospray ionization for mass spectrometry of large biomolecules, Science, 1989.
- 9. M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp: Matrix-assisted ultraviolet laser desorption of non-volatile compounds, International Journal of Mass Spectrometry and Ion Processes, vol. 78, 1987, s. 53-68.
- 10. W. J. Henzel, T. M. Billeci, J.T. Stults, S.C. Wong, C. Grimley, C. Watanabe: Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases, Proceedings of the National Academy of Sciences of the United States of America, vol. 90, 1993, s. 5011-5015.
- 11. W. J. Henzel: Analysis of two-dimensional gel proteins by mass spectrometry and microsequencing, Methods, vol. 6(3), 1994, s. 239-247.
- 12. M. Mann, P. Hojrup, P. Roepstorff: Use of mass spectrometric molecular weight information to identify proteins in sequence databases, Biological Mass Spectrometry, vol. 22(6), 1993, s. 338-345.
- 13. O.N. Jensen, A.V. Podtelejnikov, M. Mann: Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching, Analytical chemistry, vol. 69, 1997, s. 4741-4750.
- 14. D.J. Pappin, P. Hojrup, A. Bleasby: Rapid identification of proteins by peptide-mass fingerprinting, Current biology, vol. 3(6), 1993, s. 327-332.
- 15. M. Wilkins, J. Sanchez, A. Gooley, R. Appel, I. Humphery-Smith, D. Hochstrasser, K. Williams: Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it, Biotechnology & Genetic Engineering Reviews, vol. 13, 1995, s. 19-50.
- 16. T.P. Conrads, G.A. Anderson, T.D. Veenstra, L. Pasa-Tolić, R.D. Smith: Utility of accurate mass tags for proteome-wide protein identification, Analytical Chemistry, vol. 72, 2000, s. 3349-3354.
- 17. M. Witt, J. Fuchser, G. Baykut: Fourier transform ion cyclotron resonance mass spectrometry with NanoLC/microelectrospray ionization and matrix-assisted laser desorption/ionization: Analytical performance in peptide mass fingerprint analysis, Journal of the American Society for Mass Spectrometry, vol. 14, 2003, s. 553-561.
- 18. R.S. Brown, J.J. Lennon: Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ ionization linear time-of-flight mass spectrometer, Analytical Chemistry, vol. 67, 1995, s. 1998-2003.
- 19. E.J. Takach, W.M. Hines, D.H. Patterson, P. Juhasz, A.M. Falick, M.L. Vestal, S.A. Martin: Accurate mass measurements using MALDI-TOF with delayed extraction, Journal of Protein Chemistry, vol. 16, 1997, s. 363-369.
- 20. O. Jahn, D. Hesse, M. Reinelt, H.D. Kratzin: Technical innovations for the automated identification of gel-separated proteins by MALDI- TOF mass spectrometry, Analytical and Bioanalytical Chemistry, vol. 386, 2006, s. 92-103.
- 21. A. Shevchenko, M. Wilm, O. Vorm, M. Mann: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Analytical Chemistry, vol. 68, 1996, s. 850-858.
- 22. A. Otto, B. Thiede, E. Müller, C. Scheler, B. Wittmann-Liebold, P. Jungblut: Identification of human myocardial proteins separated by twodimensional electrophoresis using an effective sample preparation for mass spectrometry, Electrophoresis, vol. 17(10), 1996, s. 1643-1650.
- 23. N.D. Padliya, T.D. Wood: A strategy to improve peptide mass fingerprinting matches through the optimization of matrix-assisted laser desorption/ionization matrix selection and formulation, Proteomics, vol. 4, 2004, s. 466-473.
- 24. T. Sanaki, M. Suzuki, S.H. Lee, T. Goto, T. Oe: A simple and efficient approach to improve protein identification by the peptide mass fingerprinting method: concomitant use of negative ionization, Analytical Methods, vol. 2(8), 2010, s. 1144.
- 25. N.D. Padliya, T.D. Wood: Improved peptide mass fingerprinting matches via optimized sample preparation in MALDI mass spectrometry, Analytica Chimica Acta, vol. 627, 2008, s. 162-168.
- 26. W.A. Joo, J.B. Lee, M. Park, J.W. Lee, H.J. Kim, C.W. Kim: Comparison of search engine contributions in protein mass fingerprinting for protein identification, Biotechnology and Bioprocess Engineering, vol. 12, 2007, s. 125-130.
- 27. B.T. Chait: Chemistry. Mass spectrometry: bottom-up or top-down?, Science, vol. 314, 2006, s. 65-66.
- 28. B. Thiede, W. Höhenwarter, A. Krah, J. Mattow, M. Schmid, F. Schmidt, P.R. Jungblut: Peptide mass fingerprinting, Methods, vol. 35, 2005, s. 237-247.
- 29. F. Magni, C. Sarto, C. Valsecchi, S. Casellato, S.F. Bogetto, S. Bosari, A. Di Fonzo, R.A. Perego, M. Corizzato, G. Doro, C. Galbusera, F. Rocco, P. Mocarelli, M. Galli Kienle: Expanding the proteome two-dimensional gel electrophoresis reference map of human renal cortex by peptide mass fingerprinting, Proteomics, vol. 5, 2005, s. 816-825.
- 30. A. Shapiro, J. Maizel: Molecular weight estimation of polypeptides by SDS-polyacrylamide gel electrophoresis: further data concerning resolving power and general considerations, Analytical Biochemistry, vol. 29(3), 1969, s. 505-514.
- 31. D.B. Friedman, S. Hoving, R. Westermeier: Chapter 30 isoelectric focusing and two-dimensional gel electrophoresis, [w:] R.R. Burgess, M.P. Deutscher red.: Guide to protein purification, 2nd Edition, vol. 463, 2009, s. 515-540.
- 32. B. Lanne, O. Panfilov: Protein staining influences the quality of mass spectra obtained by peptide mass fingerprinting after separation on 2-d gels. A comparison of staining with coomassie brilliant blue and sypro ruby, Journal of Proteome Research, vol. 4(1), 2005, s. 175-179.
- 33. V. Neuhoff, R. Stamm, H. Eibl: Clear background and highly sensitive\ protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis, Electrophoresis, vol. 6(9), 1985, s. 427-448.
- 34. T. Meyer, B. Lamberts: Use of coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips, Biochimica et Biophysica Acta, vol. 107(1), 1965, s. 144.
- 35. C. Scheler, S. Lamer, Z. Pan, X. Li, J. Salnikow, P. Jungblut: Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS), Electrophoresis.
- 36. L. Canelle, C. Pionneau, A. Marie, J. Bousquet, J. Bigeard, D. Lutomski, T. Kadri, M. Caron, R. Joubert-Caron: Automating proteome analysis: improvements in throughput, quality and accuracy of protein identification by peptide mass fingerprinting, Rapid Communications in Mass Spectrometry: RCM, vol. 18, 2004, s. 2785-2794.
- 37. H. Katayama, T. Nagasu, Y. Oda: Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry: RCM, vol. 15, 2001, s. 1416-1421.
- 38. F. Levander, T. Rögnvaldsson, J. Samuelsson, P. James: Automated methods for improved protein identification by peptide mass fingerprinting, Proteomics, vol. 4, 2004, s. 2594-2601.
- 39. C. Zhang, H. Zhang, D. Litchfield, K. Ken: CHCA or DHB? Systematic comparison of the two most commonly used matrices for peptide mass fingerprint analysis with MALDI MS, Spectroscopy, vol. 25(2), 2010.
- 40. E.D. Dodds, H.J. An, P.J. Hagerman, C.B. Lebrilla: Enhanced peptide mass fingerprinting through high mass accuracy: Exclusion of nonpeptide signals based on residual mass, Journal of proteome research, vol. 5, 2006, s. 1195-1203.ol. 19(6), 1998, s. 918-927.
- 41. Z. He, C. Yang, W. Yu: A partial set covering model for protein mixture identification using mass spectrometry data, IEEE/ACM Transactions on Computational Biology and Bioinformatics/IEEE, ACM, vol. 8(2), 2011, s. 368-380.
- 42. P. James, M. Quadroni, E. Carafoli, G. Gonnet: Protein identification in DNA databases by peptide mass fingerprinting, Protein Science: A Publication of the Protein Society, vol. 3, 1994, s. 1347.
- 43. B. Boeckmann, M. Blatter, L. Famiglietti, U. Hinz, L. Lane, B. Roechert, A. Bairoch: Protein variety and functional diversity: Swiss-Prot annotation in its biological context, Comptes Rendus Biologies, vol. 328(10-11), 2005, s. 882-899.
- 44. http://www.uniprot.org
- 45. http://www.ebi.ac.uk/
- 46. http://www.isb-sib.ch
- 47. http://pir.georgetown.edu/
- 48. T.U. Consortium: Ongoing and future developments at the Universal Protein Resource, Nucleic Acids Research, vol. 39, 2010, s. 214-219.
- 49. C. O’Donovan, M. Martin, A. Gattiker, E. Gasteiger, A. Bairoch, R. Apweiler: High-quality protein knowledge resource: SWISS-PROT and TrEMBL, Briefings in Bioinformatics, vol. 3, 2002, s. 275.
- 50. Swiss-Prot, statystyka: http://www.expasy.org/sprot/relnotes/relstat.html
- 51. TrEMBL, statystyka: http://www.ebi.ac.uk/uniprot/TrEMBLstats/
- 52. http://www.ncbi.nlm.nih.gov/
- 53. L. Geer, A. Marchler-Bauer, R. Geer, L. Han, J. He, S. He, C. Liu, W. Shi, S. Bryant: The NCBI BioSystems database, Nucleic Acids Research, vol. 38, 2010, s. D492.
- 54. http://www.proteinresearch.net
- 55. http://www.pdb.org
- 56. http://www.ncbi.nlm.nih.gov/genbank/index.html
- 57. http://www.ncbi.nlm.nih.gov/RefSeq/
- 58. http://www.ncbi.nlm.nih.gov/genbank/TPA.html
- 59. http://www.embl.org
- 60. http://www.ddbj.nig.ac.jp/
- 61. http://www.ncbi.nlm.nih.gov/sites/gquery
- 62. http://www.ebi.ac.uk/IPI/IPIhelp.html
- 63. http://www.ensembl.org/index.html
- 64. http://www.arabidopsis.org/
- 65. http://jbirc.jbic.or.jp/hinv/ahg-db/index.jsp
- 66. http://vega.sanger.ac.uk/index.html
- 67. P.J. Kersey, J. Duarte, A. Williams, Y. Karavidopoulou, E. Birney, R. Apweiler: The international orotein index: an integrated database for proteomics experiments, Proteomics, vol. 4, 2004, s. 1985-1988.
- 68. R. Apweiler, A. Bairoch, C. Wu: Protein sequence databases, Current opinion in chemical biology, vol. 8, 2004, s. 76-80.
- 69. V. Dancik, T. Addona, K. Clauser, J. Vath, P. Pevzner: De novo peptide sequencing via tandem mass spectrometry, Journal of Computational Biology, vol. 6(3-4), 1999, s. 327-342.
- 70. C. Borchers, J.F. Peter, M.C. Hall, T.A. Kunkel, K.B. Tomer: Identification of in-gel digested proteins by complementary peptide mass fingerprinting and tandem mass spectrometry data obtained on an electrospray ionization quadrupole time-of-flight mass spectrometer, Analytical Chemistry, vol. 72, 2000, s. 1163-1168.
- 71. S.W. Lee, J.P. Choi, H.J. Kim, J.M. Hong, C. G. Hur: ASPMF: a new approach for identifying alternative splicing isoforms using peptide mass fingerprinting, Biochemical and Biophysical Research Communications, vol. 377, 2008, s. 253-256.
- 72. T. Lee, J. Horng, H. Juan, H. Huang, L. Wu, M. Tsai, H. Huang: An agentbased system to discover protein–protein interactions, identify protein complexes and proteins with multiple peptide mass fingerprints, Journal of computational chemistry, vol. 27(9), 2006, s. 1020-1032.
- 73. K. Lekpor, M.J. Benoit, H. Butler, M. Schirm, D. Vasilescu, K. Bonter, D. Chelsky, P. Hugo, J. Hunter, G. Opiteck, E. Paramithiotis, P. Kearney: An evaluation of multidimensional fingerprinting in the context of clinical proteomics, Proteomics. Clinical applications, vol. 1, 2007, s. 457-466.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0047-0024