PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dwuwymiarowa elektroforeza żelowa: od eksperymentu po profile ekspresji. Część druga - analiza obrazu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Two-dimensional gel electrophoresis: from experiment to protein expresion profiles. Part two - image analysis
Języki publikacji
PL
Abstrakty
PL
Dwuwymiarowa (dwukierunkowa) elektroforeza żelowa (2-DE) jest metodą znaną od lat siedemdziesiątych poprzedniego stulecia. Zainteresowanie badaczy metodą 2-DE wynika z możliwości separacji nawet kilku tysięcy białek w jednym żelu, co pozwala na i ch detekcję i identyfikację. Dzięki wysokiej rozdzielczości wyników separacji możliwe staje się ustalenie roli biologicznej poszczególnych białek czy odkrywanie wpływu czynników zewnętrznych na organizmy żywe na poziomie proteomu. Metoda 2-DE wciąż ewoluuje. W ostatniej dekadzie nastąpił ogromny postęp w sposobie przeprowadzania eksperymentów z dużą powtarzalnością. Zmieniło się też całkowicie podejście do analizy obrazów żeli i wykorzystywane do tego celu algorytmy. Ze względu na tak szybki rozwój technik dwuwymiarowej elektroforezy żelowej, autorzy postanowili przedstawić obecny stan wiedzy w tym zakresie. Praca składa się z dwu części. W pierwszej opisano zmiany, jakie zaszły w technikach przeprowadzania eksperymentów elektroforetycznych. Draga część skupia się na analizie obrazów uzyskanych za pomocą metody 2-DE, z uwzględnien i em zmian w schemacie analizy. Druga część pracy to opis dwóch schematów analizy: klasycznego i obecnie stosowanego. Szczegółowo opracowane zostały metody analizy pojedynczego obrazu 2-DE oraz analizy porównawczej serii obrazów. Przedstawione są algorytmy stosowane do normalizacji, segmentacji obrazu, detekcji plam, dopasowywania do siebie obrazów czy tworzenia map proteomowych jako najważniejsze w całej analizie. Opisano również generowanie profili ekspresji, metody identyfikacji protein oraz internetowe bazy danych 2-DE. Autorzy nie pominęli tak ważnego zagadnienia, jak sposoby porównywania systemów analizujących dane 2-DE. Ta część pracy podsumowuje rozwój, jaki nastąpił wostatnim dziesięcioleciu w metodach stosowanych w analizie komputerowej obrazów 2-DE, którego najważniejszym krokiem było opracowanie nowego schematu analizy, opartego na tworzeniu map proteomowych.
EN
Two-dimensional gel electrophoresis (2-DE) is a method commonly used since seventies of the previous cesatury. It owns its non weakening interest of researchers because of the possibility of separation even a few thousands of proteins in one gel, what allows for protein detection a n d identification. Thanks to high resolution of separation results, it is possible to determine a biological role of particular proteins or to discover influence of extemal factors on living organisms on t h e proteome level. 2-DE i s stilł evolving. In t h e last decade, a great progress has be en made in t h e way of performing experiments and their reproducibility. Approach to the analysis of gel images and algorthms used for the analysis have been entirely changed. For the reason of suchinstant changes of methods a n d techniques of the two-dimensional gel electrophoresis, the authors decided to describe state of the art. This work consists of two parts. The first part describes changes that have b e e n made in performing of electrophoretic experiments. The second part concentrates on the analysis of obtained images, with emphasis the analysis workflow. Second part is a description of two analysis workflows: the classical one and the currentiy used one. Analysis methods of the single 2-DE image and differential analysis of the image series are discussed in detail. Algorthms used for normalization, image segmentation, spot detection, image warping and creation of proteome maps are intrcduced as th e most crucial in the whole analysis. Generation of expression profiles, protein Identification methods, and the Internet databases of the 2-DE data are described. Authors have not missed as important issue as methods of comparison of systems for 2-DE data analysis. This part of the work summarises development that has been made for the last ten years in th e methods used for the computer analysis of 2-DE images. The most important step of this development was elaborat i on of the workflow based on creation of proteome maps.
Wydawca
Rocznik
Strony
372--380
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Instytut Inżynierii Biomedycznej i Pomiarowej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska tel. 71 320-28- 25, agnieszka.suchwalko@pwr.wroc.pl
Bibliografia
  • 1. T. Rabilloud: Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains, Proteomics, vol. 2, 2002, s. 3-10.
  • 2. J. Fievet, C. Dillmann, G. Lagniel, M. Davanture, L. Negroni, J. Labarre, D. de Vienne: Assessing factors for reliable quantitative proteomics based on two-dimensional gel electrophoresis, Proteomics, vol. 4, 2004, s. 1939-1949.
  • 3. K. Pleissner, H. Oswald, S. Wegener: Proteomics: from protein seąuence tofunction, Garland Science, 2001.
  • 4. K.P. Pleifiner, F. Hoffmann, K. Kriegel, C. Wenk, S. Wegner, A. Sahlstrom, H. Oswald, H. Alt, E. Fleck: New algorithmic approaches to protein spot detection and pattern matching in two-dimensional electrophoresis gel databases, Electrophoresis, vol. 20, 1999, s. 755--765.
  • 5. J. E. Bandów, J.D. Baker, M. Berth, C. Painter, OJ. Sepulveda, K.A. Clark, I. Kilty, R.A. VanBogelen: Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies-COPD biomarker discovery study, Proteomics, vol. 8,2008, s. 3030-3041.
  • 6. J.S. Gustafsson, A. Blomberg, M. Rudemo: Warping two-dimensional electrophoresis gel images to correct for geometric distortions of the spot pattern, Electrophoresis, vol. 23,2002, s. 1731-1744.
  • 7. J.S. Gustafsson, R. Ceasar, CA. Glasbey, A. Blomberg, M. Rudemo: Statistical exploration of variation in quantitative two-dimensional gel electrophoresis data, Proteomics, vol. 4,2004, s. 3791-3799.
  • 8. R.D. Appel, J. Vargas, P.M. Palagi, D. Walther, D.F. Hochstrasser: Melanie II: a third generation software package for analysis of two-dimensional electrophoresis images-II Algorithms, Electrophoresis, vol. 18, 1997, s. 2735-2748.
  • 9. R. Rangayyan: Biomedical image analysis, CRC, 2005.
  • 10. J.J. Tyson R.H. Haralick: Computer analysis of two-dimensional gels by a general image processing system, Electro-phoresis, vol. 7(3), 1986, s. 107-113.
  • 11. A.W. Dowsey, M.J. Dunn, G.Z. Yang: The role of bioinformatics in two-dimensional gel electrophoresis, Proteomics, vol. 3, 2003, s. 1567--1596.
  • 12. S.R. Sternberg: Grayscale morphology, Comput. Vision Graph. Image Process., vol. 35(30, 1986, s. 333-355.
  • 13. M.M. Skolnick: Application of morphological transformations to the analysis of two-dimensional electrophoretic gels of biological materials, vol. 35(3), 1986, s. 306-332.
  • 14. M.C. Pietrogrande, N. Marchetti, F. Dondi, EG. Righetti: Spot overlapping in two-dimensional polyacrylamide gel electrophoresis maps: relevance to proteomics, Electrophoresis, vol. 24,2003, s. 217-224.
  • 15. M.C. Pietrogrande, N. Marchetti, F. Dondi, EG. Righetti: Spot overlapping in two-dimensional polyacrylamide gel electrophoresis separations: a statistical study of complex protein maps, Electrophoresis, vol. 23, 2002, s. 283-291.
  • 16. R.D. Appel, P.M. Palagi, D. Walther, J.R. Vargas, J.C Sanchez, F. Ravier, C. Pasquali, D.F. Hochstrasser: Melanie Il-a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface, Electrophoresis, vol. 18, 1997, s. 2724-2734.
  • 17. N.L. Anderson, J. Taylor, A.E. Scandora, B.P. Coulter, N.G. Anderson: The TYCHO system for computer analysis of two-dimensional gel electrophoresis patterns, Clinical chemistry, vol. 27, 1981, s. 1807-1820.
  • 18. A.D. Olson M.J. Miller: Elsie 4: quantitative computer analysis of sets of two-dimensional gel electrophoretograms, Analytical biochemistry, vol. 169, 1988, s. 49-70.
  • 19. L. Vincent, P Soille: Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE transactions on pattern analysis and machine intelligence, vol. 13,1991, s. 583-598.
  • 20. N.H. Packer, M.S. Bali, RL. Devine: Glycoprotein detection of 2-D separated proieins, Methods in molecular biology (Clifton, N.J.), vol. 112,1999, s. 341-352.
  • 21. M. Berth, EM. Moser, M. Kolbe, J. Bernhardt: The state of the an in the analysis of two-dimensional gel electrophoresis images, Applied microbiology and biotechnology, vol. 76, 2007, s. 1223-1243.
  • 22. D.P. Kreil, N.A. Karp, K.S. Lilley: DNA microarray normalization methods can remove bias from differential protein expression analysis of2D difference gel electrophoresis results, Bioinformatics (Oxford, England), vol. 20,2004, s. 2026-2034.
  • 23. H.Y. Tan, T.W. Ng, O.W. Liew: Effects of light spectrum in flatbed scanner densitometry of stained polyacrylamide gels, BioTechniques, vol. 42, 007, s. 474-478.
  • 24. K. Takahashi, M. Nakazawa, Y. Watanabe, A. Konagaya: Fullyautomated spot recognition and matching algorithms for 2-D gel electrophoretogram of genomic DNA, Genome informatics, Workshop on Genome Informatics, vol. 9,1998, s. 161-172.
  • 25. S.M.N. Hunt, M.R. Thomas, L.T. Sebastian, S.K. Pedersen, R.L. Harcourt, AJ. Sloane, M.R. Wilkins: Optimal replication and the importance of experimental design for gel-based quantitative proteomics, Journal of proteome research, vol. 4(3), 2005, s. 809-819.
  • 26. N.A. Karp, D.P. Kreil, K.S. Lilley: Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis, Proteomics, vol. 4, 2004, s. 1421-1432.
  • 27. K. Loster C. Kannicht: 2D-electrophoresis. Detection of glycosylation and influence on spot pattern, Methods in molecular biology (Clifton, N.J.), vol. 194,2002, s. 301-316.
  • 28. S. Luhn, M. Berth, M. Hecker, J. Bernhardt: Using standard positions and image fusion to create proteome maps from collections of two-dimensional gel electrophoresis images, Proteomics, vol. 3,2003, s. 1117-1127.
  • 29. G. Van den Bergh, L. Arckens: Protein profiling based on two-dimensional difference gel electrophoresis, Methods in molecular biology (Clifton, N.J.), vol. 439, 2008, s. 211-224.
  • 30. M.D. Miller, R.A. Acey, L.Y.T. Lee, AJ. Edwards: Digital imaging considerations for gel electrophoresis analysis systems, Electrophoresis, vol. 22, 2001, s. 791-800.
  • 31. J. Prehm, P. Jungblut, J. Klose: Analysis of two-dimensional electrophoretic protein patterns using a video camera and a computer. U. Adaptation of automatic spot detection to visual evaluation, Electrophoresis, vol. 8(12), 1987, s. 562-572.
  • 32. K. Conradsen, J. Pedersen: Analysis of two-dimensional electrophoretic gels, Biometrics, vol. 48,1992, s. 1273.
  • 33. A. Paradela, J.P. Albar: Adoances in the analysis of protein phosphorylation, Journal of proteome research, vol. 7, 2008, s. 1809-1818.
  • 34. J. Roerdink, A. Meijster: The watershed transform: definitions, algorithms and parallelization strategies, Mathematical Morphology, vol. 41, 2001, s. 187-228.
  • 35. J. Smołka: Watershed based region growing algorithm, Annales Informatica UMCS, Lublin, vol. 3,2005, s. 169.
  • 36. A. Suchwalko, H. Podbielska: Dwuwymiarowa elektroforeza żelowa: od eksperymentu po profile ekspresji. Cześć pierwsza - eksperyment, Inżynieria Biomedyczna - Acta Bio-Optica et Informatica Medica, vol. 16,2010, s. 285-292.
  • 37. J.A. Westbrook, J.X. Ya n , R. Wait, S.Y. Welson, M.J. Dunn: Zooming-in on the proteome: very narrow-range immobilised pH gradients reveal more protein species and isoforms, Electrophoresis, vol. 22,2001, s. 2865-2871.
  • 38. A. Moga, B. Cramariuc, M. Gabbouj: An efficient watershed segmentation algorithm suitable for parallel implementation, IEEE Comput. Soc. Press.
  • 39. W.F. Patton: Detection technologies in proteome analysis, Journal of Chromatography. B, Analytical technologies in the biomedical and life sciences, vol. 771, 2002, s. 3-31.
  • 40. T. Rabilloud: Detecting proteins separated by 2-D gel electrophoresis, Analytical Chemistry, vol. 72,2000, s. 48A-55A.
  • 41. W. Weiss, F. Weiland, A. Gorg: Protein detection and quantitation technologies for gel-based proteome analysis, Methods in molecular biology (Clifton, N.J.), vol. 564, 2009, s. 59-82.
  • 42. J. De Bock, P. De Smet, W. Philips: A fast sequential rainfalling watershed segmentation algorithm, Advanced Concepts for Intelligent Yision Systems, Springer, 2005, s. 476-482.
  • 43. A. Meijster, J. Roerdink: A proposal for the implementation of a parallel watershed algorithm, Computer Analysis of Images and Patterns, Springer, s. 790-795.
  • 44. S.Z. Li: Markov random field modelling off MPJ data using a mean field EM-algorithm4, Methods in Computer Vision and Pattern, 1999, s. 317-330.
  • 45. M.S. Baker: Automatic registration and segmentation algorithm for multiple electrophoresis images, SPIE, 2000.
  • 46. A. Efrat, F. Hoffmann, K. Kriegel, C. Schultz, C. Wenk, Geometrie algorithms for the analysis of 2D-electrophoresis gels, Journal of Computational Biology, vol. 9(2), 2002, s. 299-315.
  • 47. P.F. Lemkin, J.E. Myrick, K.M. Upton: Splitting merged spots in two dimensional polyacrylamide gel electrophoresis gel images, Applied and theoretical electrophoresis: the official journal of the International Electrophoresis Society, vol. 3, 1993, s. 163-172.
  • 48. K. Miura: Imaging technologies for the detection of multiple stains in proteomics, Proteomics, vol. 3,2003, s. 1097-1108.
  • 49. P.F. Lemkin, L.E. Lipkin: GELLAB: A computer system for 2D gel electrophoresis analysis. II. Pairing spots, Computers and biomedical research, an international journal, vol. 14,1981, s. 355-380.
  • 50. A.T. Rosengren, J.M. Salmi, T. Aittokallio, J. Westerholm, R. Lahesmaa, T.A. Nyman, O.S. Nevalainen: Comparison of PDQuest and Progenesis software packages in the analysis of two-dimensional electrophoresis gels, Proteomics, vol. 3,2003, s. 1936-1946.
  • 51. M. Eravci, S. Fuxius, O. Broedel, S. Weist, S. Eravci, U. Mansmann, H. Schluter, J. Tiemann, A. Baumgartner: Improoed comparatweproteome analysis based on two-dimensional gel electrophoresis, Proteomics, vol.7,2007, s. 513-523.
  • 52. J.I. Garrels: The QUEST system for quantitative analysis of two-dimensional gels, The Journal of Biological chemistry, vol. 264, 1989, s. 5269-5282.
  • 53. M J. Dutt, K.H. Lee: The scaled volume as an image analysis variable for detecting changes in protein expression levels by silver stain, Electrophoresis, vol. 22,2001, s. 1627-1632.
  • 54. C. Glasbey, K.V. Mardia: A review of image-warping methods, Journal of Applied Statistics, vol. 25, 1998, s. 155-171.
  • 55. J. Salmi, T. Aittokallio, J. Westerholm, M. Griese, A. Rosengren, T.A. Nyman, R. Lahesmaa, O. Nevalainen: Hierarchical grid transformation for image warping in the analysis of two-dimensional electrophoresis gels, Proteomics, vol. 2, 2002, s. 1504-1515.
  • 56. T. Aittokallio, J. Salmi, T.A. Nyman, O.S. Nevalainen: Geometrical distortions in two-dimensional gels: applicable correction methods, Journal of Chromatography. B, Analytical technologies in the biomedical and life sciences, vol. 815, 2005, s. 25-37.
  • 57. K. Kaczmarek, B. Walczak, S. De Jong, B. Vandeginste: Comparison of image-transformation methods used in matching 2D gel electrophoresis images, Acta Chromatographica, no. 13, 2003, s. 7-21.
  • 58. A. Gorg, W. Postel, A. Domscheit, S. Giinther. Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects, Electrophoresis, vol. 9,1988, s. 681-692.
  • 59. T. Voss, P. Haberl: Observations on the reproducibility and matching efficiency of two-dimensional electrophoresis gels: consequences for comprehensive data analysis, Electrophoresis, vol. 21,2000, s. 3345-3350.
  • 60. G. Horgan, A. Creasey, B. Fenton: Superimposing two-dimensional gels to study genetic variation in malaria parasites, Electrophoresis, vol. 13(1), 1992, s. 871-875.
  • 61. RR. Graves, TAJ. Haystead: Molecular biologist’s guide to proteomics, Microbiology and molecular biology reviews: MMBR, vol. 66, 2002, s. 39-63.
  • 62. R.A. Bradshaw, A.L. Burlingame, S. Carr, R. Aebersold: Protein Identification: the good, the bad, and the ugly, Molecular & cellular proteomics: MCP, vol. 4,2005, s. 1221-1222.
  • 63. M.R. Wilkins, R.D. Appel, J.E. Van Eyk, M.C.M. Chung, A. Gorg, M. Hecker, L.A. Huber, H. Langen, AJ. Link, Y.-K. Paik, S.D. Patterson, S.R. Pennington, T. Rabilloud, R. J. Simpson, W. Weiss, M.J. Dunn: Guidelines for the next 10 years of proteomics, Proteomics, vol. 6,2006, s. 4-8.
  • 64. RH. 0'Farrell: High resolution two-dimensional electrophoresis of proteins, The Journal of Biological Chemistry, vol. 250, 1975, s. 4007- -4021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0045-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.