PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of soil parameters by in-situ tests for mapping

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Artykuł przedstawia i dyskutuje kilka problemów związanych z programowaniem i interpretacją badań in-situ, a także dokumentowaniem ich rezultatów. Analiza zawiera ocenę wpływu efektów geologicznych i inwestycyjnych na parametry mechaniczne gruntów, kryteria doboru metody badania in-situ dla rozwiązania problemu geotechnicznego, syntetyczną ocenę odnośnie współczesnej koncepcji opisu parametrów wytrzymałościowych i odkształceniowych gruntów. Artykuł przedstawia także skrótowo nowe techniki badania in-situ, na przykład: badania typu T-bar i „ball penetrometer”. W pracy omówiono syntetycznie podstawy teoretyczne dla przygotowania reprezentatywnych parametrów gruntów, które są wykorzystywane do konstrukcji jednorodnych geotechnicznie warstw gruntów oraz podano przykłady wydzielania jednorodnych warstw gruntów w podłoża, traktując problem jako zadanie jednowymiarowe (1-D) i płaskie (2-D). Przedstawiona została także koncepcja: grupowania danych jako zadanie trójwymiarowe (3-D). Danymi do grupowania i wydzielania warstw były parametry z badania CPTU tj. znormalizowany opór stożka i współczynnik tarcia. W artykule przedyskutowano także efektywność zastosowanych metod dla określenia 3-D modelu podłoża tj. modelu litologicznego i wytrzymałościowego oraz modelu definiującego sztywność podłoża.
EN
The paper presents and discusses several components of such procedures as programming and interpretation of in-situ tests and documentation of their results. These include the assessment of the effect of geological and investment processes on mechanical soil parameters of subsoil, criteria for the selection of in-situ testing techniques to solve the presented geotechnical problem, a synthetic conclusion concerning the determination of present-day concepts and a description of strength and deformation parameters of soils using CPTU, DMT, VST and SCPTU. The paper also briefly presents new insitu techniques belonging to the full flow group, e.g. T-bar and ball penetrometer tests, as well as theoretical foundations for the determination of representative parameters for the isolation of geotechnically homogenous soil layers in the subsoil. Examples are given of the isolation of homogenous layers using the cluster method and the krieging method, treating the problem as a uniaxial (1-D) and flat (2-D) problem. Moreover, the author’s 2-stage concept for clustering data as a quasi three-dimensional (3-D) problem. Data used to isolate layers included parameters from CPTU, normalized cone resistance and a coefficient of friction. The paper also discusses the effectiveness of the applied methods to obtain a 3-D model of subsoil structure, i.e. lithologic and strength models, and a model defining the diverse subsoil rigidity.
Rocznik
Strony
75--98
Opis fizyczny
Bibliogr. 95 poz.
Twórcy
autor
Bibliografia
  • [1] Aas G., Laçasse S., Lunne T., Hoeg K. (1986). Use of in-situ tests for foundation design on clay. Proc. of the ASCE Conference In-situ 86, Blackburg, (ASCE), p. 1-30.
  • [2] Ang. A.H.S., Tang C.L. (1975). Probability concepts in engineering planning and design. Basic Principles, J. Wiley and Sons, New York.
  • [3] Baldi G., Bellotti R., Ghionna V, Jamiołkowski M., Pasqualini E. (1986). Interpretation of CPT'S and CPTU'S. 4th International Geotechnical Seminar. 2nd Part: Drained Penetration, Singapore, p. 143-156.
  • [4] Baligh MM. (1975). Theory of deep static cone penetration resistance. Department of Civil and Environmental Engineering Massachusetts. Institute of Technology. Report No R 75-56.
  • [5] Bjerrum L. (1973). Problem of soil mechanics and construction on soft clays. Proc. of 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, vol. 3, p. 111-159.
  • [6] Bolton M. D. (1986). The strength and dilatancy of sands. Geotechnique, vol. 36, p. 65-78.
  • [7] Briaud J., L., Miran J. (1992). The flat dilatometer test. US Department of Transportation Federal Highway Administration. Pub. No FHWA-SA-91-0,44. p. 1-101.
  • [8] Calinski T., Harabasz. (1974). A dendrite method for cluster analysis. Communication in statistics, vol. 3, p. 1-27.
  • [9] Collins IE, Yu H.S. (1995). Undrained cavity expansions in critical state soils. Journal of Numerical and Analytical Methods in Geomechanics, vol. 20, p. 489-516.
  • [10] Cubrinowski M., Ishihara K. (1999). Empirical correlation between SPT N:value and relative density for sandy soils. Soil and Foundation 39, p. 61-72.
  • [11] Cubrinowski M., Ishihara K. (2002). Maximum and minimum void ratio, characteristics of sand, Soils and Foundation 39, p. 63-78.
  • [12] Dawson R. (1959). Investigation of the Liquid Limit Tests of Soils. Papers on Soils 1959 Meeting, A.S.T.M. Publication No 254.
  • [13] DeGrootD.J., Lutenegger A. J. (2005). Characterization by sampling and in-situ testing – Connecticut Valley varved clay. Proc. of 2nd International Workshop "Interpretation of in-situ test and sample disturbance of clays". Studia Geotechnica et Mechanica, Technical University, Wroclaw, Poland, No 3-4, p. 91-107.
  • [14] DeGroot D. J. Poiser S. K, London M. M. (2003). Sample disturbance - soft clays. Studia Geotechnica et Mechanica No 3. Proc. of 2nd International Workshop: Interpretation of in-situ tests and sample disturbance of clays, Technical University, Wroclaw, Poland, p. 91-107.
  • [15] DeGroot D. J. (2007). Measurements of vs. to evaluate samples disturbance. International Workshop: Soil Characterization and Related Topics. NGI Oslo, 21-22nd March, (not published proceedings).
  • [16] DeMello VR B. (1971). The standard penetration test. Proc. 4th Panamerican Conference on Soil Mechanics and Foundation Engineering Puerto Rico, vol. 1, p. 1-86.
  • [17] Duncan J. M. (1994). The role of advanced constitutive relations in practical applications. Proc. of 13th International Conference Soil Mechanics and Foundation Engineering New Delhi, Balkema, p. 31-48.
  • [18] Durgunoglu H.T., Mitchell J.K. (1973). Static penetration resistance of soils. Geotechnical Engineering University of California. Berkley. No 24.
  • [19] DrescherA., Kwaszczyńska E., Mróz Z. (1967). Static and kinematic of the granular medium in the case of wedge identation. Archiwum Mechaniki Stosowanej, 1.19.
  • [20] Facciorusso J., Uzielli M. (2004). Stratigraphic profiling by cluster analysis and fuzzy soil classification from mechanical cone penetration tests. Proc. Of ISC-2 on Geotechnical and Geophysical Site Characterization, Porto, Millpress, Rotterdam, p. 905-912.
  • [21] Gambin M., Magnan J.P., Mestata P. (2005). International symposium: 50 years of pressuremeters (Proc. ISP5 - Pression, Marne-la-Vallee), Lab Central des Ponts et Chaussee, Paris: 740 pages.
  • [22] Grazie J. L., Lunne T, Pandes S. (2003). An oedometer test study on the preconsolidation stress of glaciomarine clays. Cana-dian Geotechnical Journal (5), p. 857-872.
  • [23] Gryczmański M., Kowalska M. (2007). Evaluation of Geotechnical Parameters in Modern Laboratory Tests accounting for Loading Paths. Proc. of 3nd International Workshop on Interpretation of in-situ tests and sample disturbance of clays. Studia Geotechńica et Mechanica No 1, Technical University, Wroclaw, Poland.
  • [24] Harder H., von Bloh G. (1988). Determination of representative CPT-parameters. Proc. of International Conference: Penetration testing in the UK. Thomas Telford, London, p. 237-240.
  • [25] Harman D.H. (1976). A statistical study of static cone bearing capacity, vertical effective stress and relative density of dry and saturated fine sands in Large Triaxial Test Chamber. M. SC. Dissertation University of Florida. Gainesville.
  • [26] HatanakaM., UchidaA. (1996). Empirical correlation between penetration resistance and effective friction angle of sandy soils. Soils and Foundation 36 (4), p. 1-9.
  • [27] Hegazy Y.A., Mayne P.W. (2002). Objective Site Characterization Using Clustering of Piezocone Data, Journal of Geotechnical and Geoenvironmental Engg., vol. 12.
  • [28] Herrman L.R., Lee Y.S. (1994). Finite element investigation of the disturbance produced by the sampling tube device. Department of Civil and Environmental Engg. University of California Report No CR 95.005, Davis.
  • [29] Herrmann L.R., Melo J. (1994). Investigation of an alternative finite element procedure: A one-step, steady-state analysis. Department of Civil and Environmental Engineering, University of California, Report No. CR 95.001, Davis.
  • [30] Houlsby G.T., Whithers N. J. (1988). Analysis of the cone penetration pressuremeters in clay. Geotechnique 38, p. 575-587.
  • [31] Jamiołkowski M., Lo Presti D.C.F., Manassero M., (2001). Evaluation of relative density and shear strength of sands from CPT and DMT. C. C. Ladd Symposium, M.I.T Cambridge Mass.
  • [32] Jamiołkowski M., Ghionna VN., Lancellotta R., Pasqualini E. (1988). New correlations of penetration tests for design practice. Proc. of 1s t International Symposium on Penetration Testing ESOPT Orlando, Florida, vol. 1, p. 263-296.
  • [33] Karslud K, Lunne T., Kert A., Strandvik S. (2005). CPTU correlations for clays. Proc. of XVIth International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, p. 693-702.
  • [34] Kaufman, Rousseeuw (1990). Finding Groups in Data; An introduction to cluster analysis J. Wiley & Sons.
  • [35] Keaveny J.M., Nadim E, Lacasse S. (1989). Autocorrelation functions for offshore geotechnical data. Proc. of 5t h In-ternational Conference on Structural Safety and Reliability, San Francisco, American Society of Engineers, p. 263-70.
  • [36] Kenney T. C. (1963). Correspondence. Geotechnique, vol. XIII No 2.
  • [37] Kezdi A., Ladanyi J., Kabai J. (1971). Compaction of transition soils. Proc. of 4t h International Conference on Soil Mechanics. Budapest Academia Kiado, p. 177-185.
  • [38] Krzyśko M., Wołyński W, Górecki X, Skorzybut M. Teaching systems (in Polish, prepared for print in PWN).
  • [39] Kulhavy EM., Mayne P. (1991). Relative density, SPT and CPT inter-relationships. Calibration Chamber Testing. Elsevier, p. 197-211.
  • [40] Lade P. V. (2005). Overview of constitutive models forsoils. Calibration of constitutive models. GSP 139. Proc. of the Conference Georonteus, Austin ASCE, p. 1-39.
  • [41] Lancellotta R. (1995). Geotechnical Engineering. Balkema, Rotterdam, p. 1-436.
  • [42] Larsson R., Bergdahl U., Eriksson L. (1989). Evaluation of strength of cohesive soils with special reference to Swedish practice and experience. SGI Information 3, Linkóping.
  • [43] Leroueil S., Hight P.W (2003). Behavior and properties of natural soils and soft rocks. Characterization and Engineering Properties of Natural Soils. Swets &Zeitlinger, p. 29-254.
  • [44] Lee J. K. (1974). Soil Mechanics - New Horizons, chapter 3. Lumb P. Newnes - Butterworth, London, p. 44-112.
  • [45] Liszkowski J, Tschuschke M., Młynarek Z., Tschuschke W. (2004). Statistical evaluation of the dependence of the liquidity index and undrained shear strength of CPTU parameter of cohesive soils. Proc. Of International Conference Geotechnical and Geophysical Site Characterization. ISC-2, Porto, Millpress, p. 979-987.
  • [46] Long M. (2005). Review of peat strength, peat characterization and constitutive modeling of peat with reference to Landslider. Studia Geotechńica et Mechanica No 3. Proc. of 2n d International Workshop: Interpretation of in-situ tests and sample distur-bance of clays, Technical University, Wroclaw, Poland, p. 67-90.
  • [47] Long M., Donohue S. (2007). In-situ shear wave velocity from MASW surface waves at Norwegian soft clay sites. Proc. of 3 r d International Workshop: On in-situ test and sample disturbance of clays. Studia Geotechńica et Mechanica No 1, Technical University, Wroclaw, Poland.
  • [48] Lunne T. (2007). Interpretation of CPT in compressible sands. International Workshop: Soil Characterization and Relative Topics. NGI Oslo, 21-22nd March (not published proceedings).
  • [49] Lunne X, Bene T., Andersen K.H., Strandvik S., Sjursen M. (2005). Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays. Canadian Geotechnical Journal, p. 1-50.
  • [50] Lunne X, Robertson E K, Powell J.J. M. (1997). Cone Penetration Testing in Geotechnical Practice. Blackie Academic EF Spon/Routledge Publishers, New York, p. 312.
  • [51] Marchetti S. (1992). The flat dilatometer test. Department of Transportation. Publication No FHWA-SA-91-044, (1992).
  • [52] Marchetti S., Marchetti D., Monaco P., Xotani G. (2007). Experience with seismic dilatometer in various soil types. 3r d International Seminar: Soil design parameters from in-situ and laboratory tests. Studia Geotechnica et Mechanica No 1, Technical University, Wrocław, Poland, (in print).
  • [53] Mayne P. W. (2005). Integrated ground behavior; insitu & laboratory test. Deformation Proc. Of Conference: Characteristics of Geomaterials, vol. 2, Taylor & Francis, London p. 155-177.
  • [54] Mayne P. W. (2006). Interrelationships of DMT and CPT readings in soft clays. Proc. 2n d International Conference on DMT, Washington p. 231-236.
  • [55] Mayne P. W (2006). In-situ test calibration for evaluating soil parameters. In-situ testing. Singapore Workshop, p. 1-56.
  • [56] Mayne P. W, Kulhavy F. W (1991). Calibration chamber data base and boundary effects correction on CPT data. Proc. of International Symposium on Calibration Chamber Testing. Potsdam NY. p. 257-264.
  • [57] Menzenbach E. (1954). Die Anwendbarkeit von Sonden zur Priifung der Festigkeiteigenschaften des Baugrundes. Dissertation, Technische Hochschule Aachen. Westdentschervelag opladen.
  • [58] Mimura M. (2003). Characteristics of some Japanese natural sands - data from undisturbed frozen samples. Proceedings of Singapore Workshop: Characterization and Engineering properties of Natural Soil. Swets & Zeitlinger, Lisse, vol. 2, p. 1149-1168.
  • [59] Młynarek Z. (2003). Influence of quality of in-situ tests on evaluation of geotechnical parameters of subsoil. Proc. of 13t h European Conference on Soil Mechanics and Geotechnical Engineering. Prague, vol. 3, p. 565-570.
  • [60] Młynarek Z., Gogolik S., Marchetti D. (2006). Suitability of the SDMT method to asses geotechnical parameters of mine tailings. Proc. of 2n d International Conference on the Flat Dilatometer, Washington DC. p. 148-153.
  • [61] Młynarek Z., Przystański J., Rzeźniczak J. (1979). Przykład posadowienia zapory ziemnej na torfach z uwzględnieniem wpływu wzmocnienia gęstoosiowego. Inżynieria i Budownictwo, p. 472-475.
  • [62] Młynarek Z., Sanglerat G. (1983). Relationship between shear parameters and cone resistance for some cohesive soils. Proc. of International Symposium In-situ Tests. Paris, vol. 2, p. 347-352.
  • [63] Młynarek Z., Xschuschke W. (2005). Ocena wpływu wysokozmineralizowanej wody nadosadowej na plastyczność gruntów spoistych (in polish). Report No 299/05, HEBO Poznań Ltd., p. 1-44.
  • [64] Młynarek Z. (2007); Site investigation and mapping in urban area. Proc. XIV European Conference on Soil Mechanics and Geotechnical Engg. vol. 1.
  • [65] Młynarek Z., Wierzbicki L, Xschuschke W. (2005). The application of statistical criteria for the construction of geotechnically homogenous soil layers in subsoil (in polish). Geoengineering and Tuneling 2/2005. Kraków, p. 14-17.
  • [66] Młynarek Z., Wierzbicki J., Wołyński W. (2007). An approach to 3-D subsoil model bared on CPTU results. Proc. of 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid.
  • [67] Nowatzki E., Karafiath L. (1972). The effect on cone angle on penetration resistance. Research Department Grumman Aerospace Corporation, New York.
  • [68] Odebrecht E., Schnaid E, Rocha M. M., Bemardes G. (2004). Energy measurements for standard penetration tests and the effects of the length of rods. Proc. of International Conference: Geotechnical and Geophysical Site Characterization. ISC-2, Porto, Millpress, p. 351-359.
  • [69] O'Neill OA., Baldi G., Delia XorreA. (1995). The multifunctional envirocone test system. Proc. International Conference: Advances in site investigation practice. London. Institution of Civil Engineers, p. 1-17.
  • [70] FarkinA. K., Lunne X. (1982). Boundary effects in the laboratory calibration of a cone penetrometer in sand. Proc. of 2n d ESOPT, Amsterdam, vol. 2, p. 761-768.
  • [71] Powell J.M. (2005). In-situ testing. General report. Proc. of 14t h International Conference on Soil Mechanics and Geotechnical Engineering, Millpress, Osaka, p. 729-734.
  • [72] Powell J.M., Lunne X. (2005). Comparison of different sized piezocone in UK clays. Proc. of 14th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Millpress, Rotterdam, p. 729-734.
  • [73] Powell J. M., Quarterman R. (1988). The interpretation of cone penetration tests in clay with particular reference to rate effects. Proc. of the International Symposium on Penetration Testing, ISPT-1, Orlando, Balkema, p. 903-910.
  • [74] Robertson P., Lunne T., Powell J. (1995). Applications of penetration tests for geo-environmental purposes. Proc. International Conference: Advances in site investigation practice. London, Institution of Civil Engineers.
  • [75] Rowe P. W, (1969). The relation between the shear strength of sands in triaxial compression plane strain and direct shear. Geotechnique 1991, p. 75-86.
  • [76] Salgado R., Boulanger R.W., Mitchell J.K. (1997). Leteral stress effects on CPT liquefaction resistance correlations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE1.123, p. 726-735.
  • [77] Salgado R., Mitchell J. K., Jamiolkowski M. (1998). Calibration chamber size effects on penetration resistance in sand. Journal of Geotechnical Engineering Division ASCE, p. 878-888.
  • [78] Santamarina J. C, Cho G. C. (2004). Soil behavior: the rule of particle shape. Advances in Geotechnical Engineering: The Skempton Conference, vol. 1. p. 604-617.
  • [79] Schmertmann J. M. (1975). Measurement of in-situ shear strength. Proc. of Raleigh Conference: In-situ Measurement of Soil Properties. ASCE, p. 57-138.
  • [80] Schmertmann J. M. (1978). Guidelines for cone penetration tests, performance and design. U.S. Federal Highway Administration, Washington 1978, report FHWA-TS-78-209.
  • [81] SchnaidF. (2005). Geocharacterization and engineering properties of natural soil by in-situ tests. Proc. Of 14th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Millpress, Rotterdam, vol. 1, p. 3-45.
  • [82] SeedB., Woodward R., Lundgreen R. (1964). Clay mineralogical aspects of the Atterberg limits. Journal of Soil Mechanics and Foundation Engineering. Proc. Of the American Society of Civil Engineering SM. 4, p. 107-115.
  • [83] Seed B., Woodward R., Lundgreen R. (1964). Fundamental Aspects of Atterberg limits. Journal of Soil Mechanics and Foun-dation Engineering. Proc. ASCE, SM 6.
  • [84] Senneset K, Sandven R., Janbu N. (1989). Parameters from piezocone tests. Transportation Research Record 1235, p. 24-37.
  • [85] Senneset K, Janbu AC, Svano G. (1982). Strength and deformat parameters from cone penetration tests. Proc. International Conference Penetration Testing ESOPT, Amsterdam, Balkema, p. 863-870.
  • [86] Tanaka H. (2002). Sample quality of cohesive soils: lesson from three sites, Ariake, Bothkennar and Drammen. Soils and Foundation, 40 (4), p. 57-74.
  • [87] Teh C.L. Houlsby G.T. (1991). Analytical study of the cone penetration test in clay. Geotechnique t. 41. p. 17-34.
  • [88] Tschuschke W (2007). Cone penetration testing in mine tailings (in Polish). Silesian Technical University. Pub. No 1738.
  • [89] Tschuschke W., Mtynarek Z., Werno M. (1993). Assessment of subsoil variability with the cone penetration test. Proc. of International Conference: Probabilistics Methods in Geotechnical Engineering, Canbera, Balkema Rotterdam, p. 215-219.
  • [90] Tumey M. (1976). Cone bearing vs. relative density correlation in cohesionless soils. Dozen Dissertation. Bogazici University. Istanbul.
  • [91] Van den Berg P. (1994). Analysis of soil penetration. Delft University of Technology, PhD Thesis, Delft.
  • [92] Van den Berg LP, Jacobsz S. W, Steenkamp J.M. (1998). Obtaining material properties for slope stability analysis of gold tailings dams in South Africa. Geotechnical Site Characterization "ISC 98", Atlanta, Balkema Rotterdam, t. 2, p. 1189-1194.
  • [93] Vesic A.S. (1977). Design of pile foundations. Synthesis of Highway Practice NCHRP 42, Transportation Research Board, Washington, p. 1-68.
  • [94] Yu H.S. (2004). In-situ soil testing from mechanics to interpretation. J.K. Mitchell Lecture. Proc. Of International Conference: Geotechnical and geophysical site characterization. Porto, Millpress, Rotterdam, p. 3-38.
  • [95] Yu H.S. Mitchell J. K. (1998). Analysis of cone resistance review of methods. Journal of Geotechnical and Geoenvironmental. Engineering, vol. 126, p. 140-149.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0040-0090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.