PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crevice corrosion resistance of NiTi alloy after various surface treatments

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: The aim of the work was determination of crevice corrosion resistance of NiTi alloy after various surface treatments. Design/methodology/approach: The evaluation of the electrochemical behavior of NiTi alloy was realized by recording of anodic polarization curves with the use of the potentiodynamic method in the presence of a crevice former. Tests were carried out in Tyrode’s physiological solution. Findings: Surface condition of metallic biomaterial determines its corrosion resistance. In the course of the work it was observed that only ground samples showed no resistance to crevice corrosion. Suggested surface modifications ensure good crevice corrosion resistance. Practical implications: On the basis of the obtained results it can be stated that the suggested surface treatment can be applied for medical implants due to increase of the crevice corrosion resistance and in consequence increase of biocompatibility. Originality/value: The paper presents the influence of various methods of surface treatment on crevice corrosion resistance of the NiTi alloy. The suggested methods can be applied in treatment of the material intended for medical applications especially as reduced and complex shape implants (contact of metallic material with human body fluids in a small and occluded space).
Rocznik
Strony
69--72
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, marcin.kaczmarek@polsl.pl
Bibliografia
  • [1] M. Sivakumar, S. Rajeswari, Corrosion induced failure of a stainless steel orthopaedic implant device, Steel Research 66 (1995) 35-38.
  • [2] J.L. Gilbert, C.A. Buckley, J.J. Jacobs, K.C. Bertin, M.R. Zernich, Intergranular corrosion-fatigue failure of cobalt-alloy femoral stems. A failure analysis of two implants, Journal of Bone and Joint Surgery - American 76A (1994) 110-115.
  • [3] K. Yokoyama, T. Ichikawa, H. Murakami, Y. Miyamoto, K. Asaoka, Fracture mechanisms of retrieved titanium screw thread in dental implant, Biomaterials 23 (2002) 2459-2465.
  • [4] N. Hallab, K. Mikecz, C. Vermes, A. Skipor, J.J. Jacobs, Differential lymphocyte reactivity to serum-derived metal–protein complexes produced from cobalt-based and titanium-based implant alloy degradation, Journal of Biomedical Materials Research 56 (2001) 427-436.
  • [5] D. Granchi, G. Ciapetti, L. Savarino, S. Stea, F. Filippini, A. Sudanese, R. Rotini, A. Giunti, Expression of the CD69 activation antigen on lymphocytes of patients with hip prosthesis, Biomaterials 21 (2000) 2059-2065.
  • [6] J.Y. Wang, B.H. Wicklund, R.B. Gustilo, D.T. Tsukayama, Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macro-phages in vitro, Biomaterials 17 (1996) 2233-2240.
  • [7] H.C. Liu, W.H. Chang, F.H. Lin, K.H. Lu, Y.H. Tsang, J.S. Sun, Cytokine and prostaglandin E2 release from leukocytes in response to metal ions derived from different prosthetic materials: An in vitro study, Artificial Organs 23 (1999) 1099-1106.
  • [8] Z. Paszenda, J. Tyrlik-Held, J. Marciniak, A. Włodarczyk, Corrosion resistance of Cr-Ni-Mo steel intended for implants used in operative cardiology, Proceedings of the 9th International Scientific Conference „Achievements in Mechanical and Materials Engineering 2000”, Gliwice-Sopot-Gdańsk, 2000, 425-428.
  • [9] J. Szewczenko, J. Marciniak, Corrosion of Cr-Ni-Mo steel implants electrically stimulated, Journal of Materials Processing Technology 175 (2006) 404-410.
  • [10] W. Walke, Z. Paszenda, J. Tyrlik-Held, Corrosion resistance and chemical composition investigations of passive layer on the implants surface of Co-Cr-W-Ni alloy, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 74-79.
  • [11] W. Chrzanowski, Corrosion behavior of Ti6Al7Nb alloy after different surface treatments, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 67-70.
  • [12] W. Kajzer, A. Krauze, W. Walke, J. Marciniak, Corrosion resistance of Cr-Ni-Mo steel in simulated body fluids, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 115-118.
  • [13] E. Krasicka-Cydzik, K. Kowalski, I. Glazowska, Electro-chemical formation of bioactive surface layer on titanium, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 147-150.
  • [14] G. Rondelli, B. Vicentini, A. Cigada, Corrosion behaviour of nickel titanium shape memory alloys, Corrosion Science 30 (1990) 805-812.
  • [15] D. Starosvetsky, O. Khaselev, J. Yahalom, Corrosion behavior of heat-treated intermetallic Titanium-Nickel in hydrochloric acid solutions, Corrosion 54 (1998) 524-530.
  • [16] G. Rondelli, B. Vicentini, Localized corrosion behaviour in simulated human body fluids of commercial Ni–Ti orthodontic wires, Biomaterials 20 (1999) 785-792.
  • [17] A. Remes, D.F. Williams, Review: immune response in biocompatibility, Biomaterials 13 (1992) 731-736.
  • [18] K. Takamura, K. Hayashi, N. Ishinishi, T. Yamada, Y. Sugioka, Evaluation of carcinogenicity and chronic toxicity associated with orthopedic implants in mice, Journal of Biomedical Materials Research 28 (1994) 583-589.
  • [19] C.L. Chu, C.Y. Chung, Y.P. Pu, P.H. Lin, Graded surface structure in chemically polished NiTi shape memory alloy after NaOH treatment, Scripta Materialia 52 (2005) 1117-1121.
  • [20] B. O’Brien, W.M. Carroll, M.J. Kelly, Passivation of nitinol wire for vascular implants - A demonstration of the benefits, Biomaterials 23 (2002) 1739-1748.
  • [21] C. Trepanier, M. Tabrizian, L’H. Yahia, L. Bilodeau, D.L. Piron, Effect of modification of oxide layer on NiTi stent corrosion resistance, Journal of Biomedical Materials Research 43 (1998) 433-440.
  • [22] D. Starosvetsky, I. Gotman, Corrosion behavior of titanium-nitride coated Ni-Ti shape memory surgical alloy, Biomaterials 22 (2001) 1853-1859.
  • [23] Z.D. Cui, H.C. Man, X.J. Yang, Characterization of the laser gas nitrided surface of NiTi shape memory alloy, Applied Surface Science 208/209 (2003) 388-393.
  • [24] H.C. Man, Z.D. Cui, T.M. Yue, Corrosion properties of laser surface melted NiTi shape memory alloy, Scripta Materialia 45 (2001) 1447-1453.
  • [25] Y. Fu, X.F. Wu, Y. Wang, B. Li, S.Z. Yang, Study of corrosion resistance property and microstructure of TiNi shape memory alloy modified by pulsed high-energy density plasma, Applied Surface Science 157 (2000) 167-177.
  • [26] J.X. Liu, D.Z. Yang, F. Shi, Y.J. Cai, Sol-gel deposited TiO2film on NiTi surgical alloy for biocompatibility improvement, Thin Solid Films 429 (2003) 225-230.
  • [27] M. Kaczmarek, Corrosion resistance of NiTi alloy in simulated body fluids, Achievements in Materials Science and Engineering 28/5 (2007) 269-272.
  • [28] M. Kaczmarek, W. Simka, A. Baron, J. Szewczenko, J. Marciniak, Electrochemical behavior of Ni-Ti alloy after surface modification, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 111-114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0029-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.