PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optyczne techniki identyfikacji bakterii chorobotwórczych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Optical methods for pathogenic bacteria identification
Języki publikacji
PL
Abstrakty
PL
Problem szybkiej detekcji i identyfikacji bakterii jest jednym z najważniejszych zagadnień związanych z zachowaniem zasad higieny, ochrony zdrowia i żywności. W artykule omówione zostały podstawowe problemy metrologii po­miarowej związanej z identyfikacją i charakteryzacją bakterii. Przedstawiono przegląd głównych technik rozpoznawania patogenów, z szczególnym uwzględnieniem metod optycznych, zapewniających bezkontaktowy, małoinwazyj-ny charakter pomiaru. Opisano wybrane techniki fluorescencyjne oraz analizy światła rozproszonego na bakteriach i koloniach bakterii.
EN
Problem of efficent bacteria detection and identification is important in life science medicine, health and food protection. This paper presents some problems of bacteria detection metrology, related to bacteria identification and characterization. Methods of bacteria identification, especially based on noncontact and noninvasive optical techniques, are described. Fluorescence measurements techniques and analysis of light scattering on bacteria cells and bacteria colonies are presented.
Wydawca
Rocznik
Strony
181--188
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
Bibliografia
  • 1. A.S. Colsky, R.S. Kirsner, F.A. Kerdel: Analysis of antibiotic susceptibilities of skin wound flora in hospitalized dermatology patients: The crisis of antibiotic resistance has been come to I the surface, Archives of Dermatology, vol. 134, 1998, I s. 1006-1009.
  • 2. S.B. Levy: The challenge of antibiotic resistance, Scientific American., vol. 278, 1998, s. 46-53.
  • 3. S.G.B. Amyes: The rise in bacterial resistance,BMJ, 2000, s. 199-200.
  • 4. S.B. Levy, B. Marshall: Antibacterial resistance worldwide:causes, challenges and responses. Nature Medicine Supplement, vol. 10, 2004, s. 122-129.
  • 5. F.M. Walsh. S.G.B. Amyes: Microbiology and drug resistance mechanisms of fully resistant pathogen. Current Opinion in Microbiology, vol. 7, 2004, s. 439-444.
  • 6. S. Holler, R.G. Pinnick et al.: Single - shot fluorescence I spectra of individual micrometer - sized bioaerosols illuminated by a 351- or a 266 - nm ultraviolet laser. Optics Letters, I vol. 24, 1999, s. 116-118.
  • 7. R.G. Pannick, S.C Hill, S. Niels i in.: Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity, Applied Optics, vol. I 40, 2001, s. 3005-3013.
  • 8. R.G. Pannick, S.C. Hill i in.: Real - time measurement of fluorescence spectra from single airborne biological particles. Field Analytical Chemistry & Technology, vol. 3,1999, s. 221-239.
  • 9. A. Maninen, M. Putkiranta i in.: Instrumentation for measuring fluorescence cross sections from airborne microsized particle. Applied Optics, vol. 47, 2008, s. 110-115.
  • 10. S. Sarasanandarajah, J. Kunnil i in.: Two-dimensional multiwavelenght fluorescence spectra of dipicolinic acid and calcium dipicolinate. Applied Optics, vol. 44, 2004, s. 1182-1187.
  • 11. A. Alimowa, A. Katz i in.: Proteins and dipicolinic acid released during heat shock activation of Bacillus subtilis spores probed by optical spectroscopy. Applied Optics, vol. 45, 2006, s. 445-450.
  • 12. G. Faris, R.A. Copeland i in.: Spectrally resolved absolute fluorescence cross - section for Bacillus spores. Applied Optics, vol. 36, 1997, s. 958-967.
  • 13. A. Thomas, D. Sands, D. Baum i in.: Emission wavelength dependence of fluorescence lifetimes of bacteriological spores and pollens. Applied Optics, vol. 45, 2006, s. 6634-6639.
  • 14. R.G. Pinnick, S.C. Hill, S. Niles i in.: Real-time measurements of fluorescence spectra from single airborne biological particles. Field Analytical Chemistry & Technology, vol. 3, 1999, s. 221-239.
  • 15. L.J. Rodziemski: From LASER to LIBS, the path of technology development, Spectrochim. Acta Part B, vol. 57, 2002, s. 1109-1113.
  • 16. S. Morel, N. Leone, P. Adam i in.: Detection of bacteria by time-resolved laser- induced breakdown spectroscopy. Applied Optics, vol. 42, 2003, s. 6184-6191.
  • 17. J. Thomason: Spectroscopy takes security into the field, Photonics Spectra, vol. 38, 2004, s. 83-85.
  • 18. R.T. Noble, S.B. Weisberg: A review of technologies for rapid detection of bacteria in recreational waters. Journal of Water and Health, vol. 3, 2005, s. 381-391.
  • 19. S.C. Hill, R.G. Pinnick i in.: Aerosol - fluorescence spectrum analyzer: real time measurement of emission spectra of airborne biological particles, Applied Optics, vol. 34,1995, s. 7149-7155.
  • 20. D.L. Rosen: Bacterial endospore detection using photoluminescence from terbium dipicolinate. Rev. Anal. Chem., vol. 18, 1999, s. 1-21.
  • 21. D.L. Rosen: Airborne bacterial endospores detected by use of impinge containing aqueous terbium chloride. Applied Optics, vol. 45, 2006, s. 3152-3157.
  • 22. S.J. Mechery, X.J. Zhao i in.: Using bioconjugated nanoparticles to monitor E. coli inflow channel, Chem. Asian J., vol. 1, 2006, s. 384-390.
  • 23. S. Santra, ?. Wang i in.: Development of novel dye - doped silica nanoparticles for biomarker application, J. Biomed. Opt., vol. 6, 2001, s. 160-166.
  • 24. W. Lian, S.A. Litherland i in.: Ultrasensitive detection of biomolecules with dye - doped nanoparticles. Analytical Biochemistry, vol. 334, 2004, s. 135-144.
  • 25. D.R. DeMarco, G.A. Lim: Rapid detection of E.coli 0157:H7 in ground beef using a fiber optic biosensor, J. Food Protection, vol. 62, 1999, s. 711-716.
  • 26. Ch. Waltham, J. Boyle i in.: Light scattering and absorption caused by bacterial activity in water. Applied Optics, vol. 33, 1994, s. 7536-7540.
  • 27. http://www.turbosquid.com/FullPreview/Index.cfm/ID/ 274625).
  • 28. P.J. Wyatt: Differential light scattering: a physical method for identifying living bacterial cells. Applied Optics, vol. 7,1968, s. 1879-1895.
  • 29. S. Holler, Y. Pan ? in.: Two-dimensional angular optical scattering for the characterization of airborne microparticles. Optics Letters, vol. 23,1998, s. 1489-1491.
  • 30. P.H. Kaye, J.E. Barton i in.: Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Applied Optics, vol. 39, 2000, s. 3738-3745.
  • 31. Y.L. Pan, K.B Aptowicz i in.: Charactenzing and monitoring respiratory aerosols by light scattering. Optics Letters, vol. 28, 2003, s. 589-591.
  • 32. S. Holler, S. Zomer i in.: Multivariate analysis and classification of two-dimensional angular optical scattering patterns from aggregates, Applied Optics, vol. 43, 2004, s. 6198-6206.
  • 33. G.E. Fernandez, Y.L. Pan i in.: Simultaneous forward-and backward- hemisphere elastic- light- scattering patterns of reparable - size aerosols, Optics Letters, vol. 31, 2006, s. 3034--3036.
  • 34. J.C. Auger, K.B. Atonies i in.: Angularly resolved light scattenng from aerosolized spores: Observations and calculations, Optics Letters, vol. 32, 2007, s. 3358-3360.
  • 35. O.L Sinton, R. Saija i in.: Optical scattering by biological aerosols: experimental and computational results on spore simulants. Optics Express, vol. 14, 2006, s. 6942-6950.
  • 36. Ch. Li, G.W. Kattawar i in.: Identification of aerosols by their backscattered Mueller images, Optics Letters, vol. 14, 2006, s. 3616-3621.
  • 37. E. Bae, P.P. Banada i in.: Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory, Applied Optics, vol. 46, 2007, s. 3639-3648.
  • 38. P.P. Banada, S. Guo i in.: Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species, Biosensors and Bioelectronics, vol. 22,2007, s. 1664-1671.
  • 39. E.D. Hirleman, E.W. Bae, K. Huff i in.: Light scattering endows bacterial colonies with unique fingerprints, SPIE NEWSROOM: Biomedical Optics & Medical Imaging 2007 (http://spie.org/x8457.xml)
  • 40. F. Morhard, J. Pipper i in.: Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sensors and Actuators B, vol. 70, 2000, s. 232-242.
  • 41. B.V. Kumar, K.B. Naidu: 55-65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0022-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.