PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena ryzyka pęknięcia tętniaków mózgowych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Evaluation of rupture risk of intracranial aneurysms
Języki publikacji
PL
Abstrakty
PL
Artykuł omawia nowe koncepcje oceny ryzyka pęknięcia tętniaków wewnątrzczaszkowych na podstawie parametrów geometrycznych i hemodynamicznych układu tętniak-tętnica-krew. Wiele systemów decyzyjnych opartych jest głównie na rozmiarach tętniaka oraz częstości krwawień podpajęczynówkowych. Na podstawie badań symulacyjnych wykazano, że możliwa jest kompleksowa ocena przypadków klinicznych na podstawie takich parametrów, jak współczynnik kształtu i współczynnik wielkości tętniaka wtórnego powstającego na powierzchni tętniaka pierwotnego, szerokość szyi tętniaka pierwotnego, stopień zakrzywienia tętnicy, na której położony jest tętniak pierwotny, oraz wielkość obszaru oddziaływania krwi na ścianę tętnicy. W pracy przedstawiono doniesienia oraz wyniki badań symulacyjnych ewolucji wzrostu tętniaka pierwotnego z tętniakiem wtórnym na jego powierzchni oraz oddziaływania krwi na układ tętniak-tętnica dla zmiennej szerokości szyi tętniaka i krzywizny tętnicy. Dokonano także weryfikacji zaproponowanych kryteriów oceny ryzyka dla 5 przypadków klinicznych tętniaka pierwotnego z tętniakiem wtórnym na jego powierzchni.
EN
The paper presents a new concept of evaluation of rupture risk of intracranial aneurysms using geometric and hemodynamic parameters of aneurysm, artery and blood. Existing decision systems are based mainly on the size of an aneurysm and frequency of subarrachnoid haemorrhages. From the simulation tests it was proved that the complex assessment of clinical cases is possible by evaluation of shape and size of a secondary aneurysm occurring on the surface of a primary aneurysm, the width of a primary aneurysm neck, the curvature of an artery with a primary aneurysm and the area of blood interaction at artery wall. The paper shows results of simulation tests of growth evolution of primary and secondary aneurysm, blood impingement on an aneurysm and an artery for a variable width of an aneurysm neck and a variable artery curvature, as well as verification ofproposed criteria of risk evaluation for 5 clinical cases of a primary and a secondary aneurysm.
Wydawca
Rocznik
Strony
153--159
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • Wydział Elektryczny Instytut Elektroniki, Telekomunikacji i Informatyki Politechnika Szczecińska, 71-126 Szczecin, ul. 26 kwietnia 10, tel. (091) 449-52-34, krzysztof.szafranski@ps.pl
Bibliografia
  • 1. J. Van Gijn, G. Rinkel: Subarachnoid hemorrhage: diagnosis, causes and management, Brain, vol. 124, 2001, s. 249-278.
  • 2. T.R. Forget Jr, R. Benitez, E. Veznedaroglu ? in.: A review of size and location of ruptured intracranial aneurysms, Neurosurgery, vol. 49, 2001, s. 1322-1326.
  • 3. L. Rogers: Intracranial aneurysm size and potential for rupture, J Neurosurg, vol. 67,1987, s. 475-476.
  • 4. W.I. Schievink, D.G. Piepgras, F.P. Wirth: Rupture of previously documented small asymptomatic saccular intracranial aneurysms, J Neurosurg, vol. 76,1992, s. 1019-1024.
  • 5. A.C. Burleson, CM. Strother, V.T. Turitto: Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics, Neurosurgery, vol. 37,1995, s. 774-782.
  • 6. H.H. Batjer, D.S. Samson: Basilar bifurcation aneurysm, The Practice of Neurosurgery, Baltimore, Williams and Wilkins, 1996, s. 2261-2270.
  • 7. H. Ho, D. Crute, H.H. Batjer: Surgical techniques for intracranial aneurysms, Pńnciples of Neurosurgery, Second Edition, Philadelphia, Lippincott-Raven Publishers, 1999, s. 311-317.
  • 8. T.M. Sundt Jr, S. Kobayashi, N.C. Fode, J.P. Whisnant: Results and complications of surgical management of 809 intracranial aneurysms in 722 cases. Related and unrelated to grade of patient, type of aneurysm, and timing of surgery, J Neurosurg, vol. 56, 1982, s. 753-765.
  • 9. F.P. Wirth: Surgical treatment of incidental intracranial aneurysm, Clin Neurosurg, vol. 33,1986, s. 125-135.
  • 10. M.D. Ford, G.R. Stuhne, H.N. Nikolov, D.F. Habets, S.P. Lownie, D.W. Holdsworth, D.A. Steinman: Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics, IEEE Trans Med Imaging, vol. 24, 2005, s. 1586-1592.
  • 11. G.N. Foutrakis, H. Yonas, R.J. Sclabassi: Saccular aneurysm formation in curved and bifurcating artenes, AJNR Am J Neuroradiol, vol. 20,1999, s. 1309-1317.
  • 12. B.V. Kumar, K.B. Naidu: Hemodynamics in aneurysm. Computers and Biomedical Research, vol. 29,1996, s. 119-139.
  • 13. R.W. Metcalfe: The promise of computational fluid dynamics as a tool for delineating therapeutic options in the treatment of aneurysms, AJNR Am J Neuroradiol, vol. 24,2003, s. 553-554.
  • 14. M. Shojima, M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada ? in.: Magnitude and role of wall shear stress on cerebral aneurysm. Computational Fluid Dynamic study of 20 middle cerebral artery aneurysms. Stroke, vol. 35, 2004, s. 2500-2505.
  • 15. G.R. Stuhne, D.A. Steinman: Finite element modeling of the hemodynamics of stented aneurysms, J Biomech Eng, vol. 126,2004, s. 382-387.
  • 16. C.W. Kerber, C.B. Heilman: Flow in experimental berry aneurysms: method and model, AJNR Am J Neuroradiol, vol. 4,1983, s. 374-377.
  • 17. D.W. Liepsch, H.J. Steiger, A. Poll, H.J. Reulen: Hemodynamic stress in lateral saccular aneurysms, Biorheology, vol. 24, 1987, s. 689-710.
  • 18. S. Nagayasu, H. Kikuchi, S. Nagasawa, H. Ohtsuki: Basilar artery occlusion therapy for giant aneurysm: hemodynamic analysis by hydraulic vascular model. No Shinkei Geka, vol. 20, 1992, s. 1161-1167.
  • 19. K. Yamaguchi, S. Nagasawa, S. Kawabata, M. Kawanishi ? in.: Paraclinoid aneurysms of the internal carotid artery: hydraulic simulation study on their locations and shape of the carotid siphon, Neurol Res., vol. 21,1999, s. 733-736.
  • 20. H.J. Steiger, D.W. Liepsch, A. Poll, H.J. Reulen: Hemodynamic stress in terminal saccular aneurysms: A laser-Doppler study. Heart Vessels, vol. 4,1988, s. 162-169.
  • 21. S. Tateshima, Y. Murayama, J.P. Villablanca, T. Morino ? in.: In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke, vol. 34,2003, s. 187-192.
  • 22. E.S. Di Martino, G. Guadagni, A. Fumero, G. Ballerini, R. Spirito, P. Biglioli ? in.: Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm, Med Eng Phys, vol. 23, 2001, s. 647-655.
  • 23. S. Tateshima, Y. Murayama, J.P. Villablanca, T. Morino ? in.: Intraaneurysmal flow dynamics study featuńng an acrylic aneurysm model manufactured using a computmzed tomography angiogram as a mold, J Neurosurg, vol. 95, 2001, s. 1020-1027.
  • 24. J.P. Villablanca, R. Jahan, P. Hooshi, S. Lim ? in.: Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography, AJNR Am J Neuroradiol, vol. 23, 2002, s. 1187-1198.
  • 25. L.D. Jou, CM. Quick, W.L. Young i in.: Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am J Neuroradiol, vol. 24, 2003, s. 1804-1810.
  • 26. T. Satoh, K. Onoda, S. Tsuchimoto: Visualization of intraaneurysmal flow patterns with transluminal flow images of 3D MR angiograms in conjunction with aneurysmal configurations, AJNR Am J Neuroradiol, vol. 24, 2003, s. 1436-1445.
  • 27. N. Aoki, T. Kitahara, T. Fukui i in.: Management of unruptured intracranial aneurysm in Japan: a Markovian decision analysis with utility measurements based on the Glascow Outcome Scale, Med Decis Making, vol. 18,1998, s. 357-364.
  • 28. S.C. Johnston, D.R. Gress, J.G. Kahn: Which unruptured cerebral aneurysms should be treated? A cost-utility analysis, Neurology, vol. 52,1999, s. 1806-1815.
  • 29. R. Leblanc, K.J. Worsley: Surgery of unruptured, asymptomatic aneurysms: a decision analysis, Can J Neurol Sci, vol. 22, 1995, s. 30-35.
  • 30. P. Mitchell, J. Jakubowski: Risk analysis of treatment of unruptured aneurysm, J Neurol Neurosurg Psychiatry, vol. 68, 2000, s. 577-580.
  • 31. Y. Yoshimoto, S. Wakai: Cost-effectiveness analysis of screening for asymtomatic, unruptured intracranial aneurysms. A mathematical model. Stroke, vol. 30, 1999, s. 1621-1627.
  • 32. T. Abruzzo, G.G. Shengelaia, R.C. Dawson III, D.S. Owens, CM. Cawley, M.B. Gravanis: Histologic and morphologic comparison of experimental aneurysms with human intracranial aneurysms, AJNR, vol. 19,1998, s. 1309-1314.
  • 33. K.U. Frerichs, P.E. Stieg, R.M. Friedlander: Prediction of aneurysm rupture site by an angiographically identified bleb at the aneurysm neck, J Neurosurg, vol. 93, 2000, s. 517.
  • 34. M.R. Crompton: Mechanism of growth and rupture in cerebral berry aneurysms, British Journal of Neurosurgery, vol. 1 (5496), 1966; s. 1138-1142.
  • 35. T. Sampei, M. Mizuno, S. Nakajima, A. Suzuki, H. Hadeishi, T. Ishikawa, N. Yasui: Clinical study of growing up aneurysms: report of 25 cases, No Shinkei Geka, vol. 19,1991, s. 825-830.
  • 36. H.J. Steiger: Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir Suppl (Wien), vol. 48, 1990, s. 1-57.
  • 37. H. Meng, Y. Feng, S.H. Woodward, B.R. Bendok, R.A. Ha-nel, L.R. Guterman, L.N. Hopkins: Mathematical model of the rupture mechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth. Neurological Research, vol. 27, 2005, s. 459-465.
  • 38. K. Szafrański: Analysis of rupture of intracranial saccular aneurysms, 6th IFAC Symposium on Modelling and Control in Biomedical Systems MCBMS'06, Reims, 2006, s. 495-500, ISBN--10: 0080445306.
  • 39. M. Aenis, A.P. Stancampiano, A.K. Wakhloo, B.B. Lieber: Modeling of flow in a straight-stented and non-stented side wall aneurysm model, J Biomech Eng, vol. 119,1997, s. 206-212.
  • 40. G.N. Foutrakis, H, Yonas, R.J. Sclabassi: Saccular aneurysm formation in curved and bifurcating arteries, AJNR Am J Neuroradiol, vol. 20,1999, s. 1309-1317.
  • 41. B.V. Kumar, K.B. Naidu: Hemodynamics in aneurysm, Computers and Biomedical Research, vol. 29, 1996, s. 119-139.
  • 42. K. Szafrański: Analysis of hemodynamics of intracranial saccular aneurysms, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2007, Lyon, 2007, ID 2859, ISBN: 1-4244-0788-5.
  • 43. Y. Hoi, H. Meng, S.H. Woodward, B.R. Bendok, R.A. Hand, L.R. Guterman, L.N. Hopkins: Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study, J Neurosurg, vol. 101, 2004, s. 676-681.
  • 44. H. F.J.H. Gijsen, F.N. Van de Vosse, J.D. Janssen: The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model, J Biomech, vol. 32, 1999, s. 601-608.
  • 45. T. Hassan, E.V. Timofeev, T. Saito, H. Shimizu, M. Ezura, T. Tominaga ? in.: Computational replicas: anatomical reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography, AJNR Am J Neuroradiol, vol. 25,2004, s. 1356-1365.
  • 46. H.J. Steiger, A. Poll, D. Liepsch, H.J. Reulen: Basic flow structure in saccular aneurysms: A flow visualization study, Heart Vessels, vol. 3,1987, s. 55-65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0022-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.