PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hierarchia zdarzeń sejsmicznych. Multifraktalne własności parametrów wstrząsów górniczych

Autorzy
Identyfikatory
Warianty tytułu
EN
Hierarchy of seismic events multifractal properties of seismic events properties on mines
Języki publikacji
PL
Abstrakty
PL
Zdarzenia sejsmicznie indukowane działalnością górniczą, powodowane nagłym i niespodziewanym zniszczeniem skał poddanych działaniu dużych naprężeń, stanowią zasadnicza przyczynę wypadków śmiertelnych i zniszczeń na terenie niemal wszystkich kopalń. Jednak, dopiero ostatnie dwie dekady, przez olbrzymi postęp w technologii elektronicznej i rozwój komputerów, dały istotny wkład do poznania przyczyn i mechanizmu niszczenia skał. Sejsmologia ilościowa, rozpoznając te zjawiska, może w przyszłości zaowocować bezpiecznymi metodami eksploatacji podziemnej. W pierwszej części tego opracowania został przedstawiony przegląd literatury opisującej rezultaty badań sejsmiczności górniczej. Największe osiągnięcia zostały uzyskane na polu badania lokalizacji wstrząsów, mechanizmu zniszczenia i wyznaczania istotnie ważnych parametrów sejsmicznych. Innym celem pracy była prezentacja wybranych modeli powstawania wstrząsów. Zostały przedstawione warunki konieczny i dostateczny powstawania zjawiska sejsmicznego, a także model ruchu mas i sprężyn z malejącą przy wzroście prędkości siłą tarcia. Model opisuje dwie poruszające się masy oddziałujące między sobą i z wymuszającym ruch suwakiem siłami sprężystymi. Przy pewnych układach parametrów modelu rozwiązania równań opisujących jego zachowanie prowadzą do chaosu. Przejście do rozwiązań cyklicznych do typowego dla wstrząsów chaosu daje dowód na to, że nie zawsze układy klasycznych równań różniczkowych są w stanie dostarczyć deterministycznego opisu rzeczywistości. Następnie przedstawiony jest model szorstkich centrów tarcia i model samoorganizacji wstrząsów. Obydwa modele już w swych założeniach przyjmują elementy losowości i prowadzą do fraktalnych rozkładów wstrząsów. Główna część pracy zawiera szczegółowy opis metody konstruowania hierarchicznej struktury danych sejmologicznych oraz metody analizy fraktalnej. Wszystkie multifraktale analizowane w tej pracy można wygenerować używając bardzo prostego, multiplikatywnego generatora. Hierarchie tworzone na podstawie przestrzennej konfiguracji wstrząsów górniczych umożliwiają obliczenie entropii i temperatury sejsmicznej. Temperatura może być miarą zagrożenia sejsmicznego. Została przeprowadzona analiza kilku parametrów (hipocentra i epicentra wstrząsów, energia i czas pojawiania się zdarzeń sejsmicznych) charakteryzując wstrząs. Obliczone wymiary fraktalne wykazują multifraktalną naturę zjawisk sejsmicznych. Chwilowe zmiany uogólnionego wymiaru fraktalnego mogą sygnalizować pojawienie się dużego wstrząsu. Bifraktalne zachowanie rozkładów energii wstrząsów na kopalniach węgla wprowadza istotny błąd do metod przewidywania zagrożenia sejsmicznego opartych na analizie parametru b z prawa Gutenberga-Richtera. Zostały przedstawione mapy tensora zniszczenia, redystrybucji naprężeń oraz przemieszczeń masywu skalnego powstałe w wyniku wstrząsów górniczych zarejestrowanych na kopalni złota Generał Brandt w RPA. Danymi tego rodzaju można uzupełnić wszystkie pietra hierarchii wstrząsów górniczych. Są one podstawą kilku metod prognozowania zagrożenia sejsmicznego. Ta praca koncentruje się na statycznych własnościach struktur hierarchicznych. Śledzenie dynamiki tych obiektów i korelacji z tektoniką czy eksploatacją, co też może być uwzględnione w budowie hierarchii wstrząsów, przekracza możliwości ludzkiej percepcji. Konieczne będzie zbudowanie stosownych narzędzi bazujących na metodach sztucznej inteligencji.
EN
Mining induced seismicity, caused by the sudden and violent failure of rock under high stress, has been an important cause of fatalities and damage in almost all mines. However, it is only in the last two decades, with technological advances in electronic components and in computers, that quantitative seismology has made significant contributions to understanding the causes and mechanisms of rock failure, which can in turn be applied to underground safety improvements. The first part of this paper presented a literature review of results obtained from recording mining induced seismic activity, and discusses the utility of these results for mine design purposes. The main achievements are in the fields of source location, magnitude, failure mechanisms, and evaluation and interpretation of seismic parameters. Another goal is to present some of selected models of seismic events occurrences. As the first one, the model of mess-springs and velocity-weakening friction has been presented. The model consists of two sliding blocks coupled to each other and to constant velocity driver by elastic springs. For some set of model parameters the solution exhibit chaotic behavior. The transition from stable cyclic behavior to chaos, typical for seismic events, give an evidence that sets of classical expressions are not ever necessary to give strictly deterministic picture of nature. Next part presented an asperity model of rupture along heterogeneous fault surface and, the self-organized model of seismicty. Both models are based on a simple probabilistic assumption and provides to fractal structures of seismic events. The main part of this paper contains detailed description of the method of hierarchical construction of seismic database and the method of multifractal analyses. Some aspects of artificial intelligence have been used in a goal to generate a chart of coding. Only limited numbers of the charts coding are needed to generate quite good patterns of a given set of seismic parameters. All multifractals analyzed in this paper can be generated by very simple random multiplicative process. Some examples pf parameters associated to mine rock-burst structures are presented (spatial distribution of hypocenters, energy and, time) and theirs fractal dimensions has been calculated. Temporal change of generalized dimension can indicated large seismic event. Bifractal behavior of energy distribution 9and, also a series of time of seismic events occurrences) on polish coal mine provided to large uncertainty in methods of seismic hazard prediction. The pictures of damage tensor, stress redistribution and, rock mass displacement on General Brandt gold mine (RSA) are presented.
Rocznik
Tom
Strony
3--151
Opis fizyczny
Bibliogr. 167 poz.
Twórcy
autor
  • Wydział Górnictwa i Geologii Politechnika Śląska, 44-100 Gliwice, ul. Akademicka 2 tel.( 032) 237-12-83
Bibliografia
  • 1. Gibowicz S.J., Kijko Α., (1994), An Introduction to Mining Seismology. Acad. Press Inc.
  • 2. Spottiswoode S.M., (1987), Perspective on Seismic and Rockburst Research in the South African Gold Mining Industry: 1983 to 1987. Fred Leighton Memorial Workshop on Mining Induced Seismicity, CIM, August 30-September 3, Montreal, Canada, pp. 131-139.
  • 3. Aki K., (1966), Generation and propagation of G waves from the Niigate earthquake of June 16, 1964, Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum. Bull. Earthquake Res. Inst. Tokyo Univ. 44, 73-88.
  • 4. Spottiswoode S.M., McGarr Α., (1975), Source Parameters of Tremors in a Deep-Level Gold Mine. Bulletin of the Seismological Society of America, 65, no. 1, 93-112.
  • 5. Gibowicz S.J., (1988), The Mechanics of Seismic Events Induced by Mining: A Review. Second International Symposium of Rockbursts and Seismicity in Mines. June 8-10. Minneapolis, Minnesota, pp. 2-121.
  • 6. Hedley D.G.F., (1992), Rockburst Handbook for Ontario Hardrock Mines. Mining Research Laboratories, CANMET Special Report SP92-1E, 305 pages.
  • 7. McGarr Α., (1984), Some Applications of Seismic Source Mechanism Studies to Assessing Underground Hazard. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 199-208.
  • 8. Spottiswoode S.M., (1987), Perspective on Seismic and Rockburst Research in the South African Gold Mining Industry: 1983 to 1987. Fred Leighton Memorial Workshop on Mining Induced Seismicity, CIM, August 30-September 3, Montreal, Canada, pp. 131-139.
  • 9. Obert L., Duvall W.I., (1957), Micro-Seismic Method of Determining the Stability of Underground Openings. Bulletin 573, Bureau of Mines, United States Department of the Interior, Washington.
  • 10. Deliac E.P., Gay N.C., (1984), The Influence of Stabilizing Pillars on Seismicity and Rockbursts at ERPM. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 257-263.
  • 11. Lendhardt W.A., (1988), Damage Studies at a Deep Level African Gold Mine. Second International Symposium of Rockbursts and Seismicity in Mines, 2, June 8-10, Minneapolis, Minnesota, 555-565.
  • 12. Wanat Κ., (1994), Report of stress redistribution and damage tensor. Seminar of Seismic Monitoring and Rock Mass Stability. Welkom South Africa.
  • 13. Rudajev V., (1993), Keynote address: Recent Polish and Czechoslovakian rockburst research and the application of stochastic methods in mine seismology. Rockburst and Seismicity in Mines, Young (ed.) Balkema, Rotterdam, pp. 157-161.
  • 14. Dempster E.L., (1983), Regional aspects of mining-induced seismicity: theoretical and management considerations. Rockbursts: prediction and control, London, England, October 20, pp. 37-52.
  • 15. McGreary R.G., Grant D., Falmagne D., (1993), Source mechanisms, three-dimensional boundary-element modelling, and underground observations at Ansil Mine. Rockburst and Seismicity in Mines, Young (ed.) Balkema, Rotterdam, pp. 227-232.
  • 16. Blake W., (1982), Microseismic applications for mining - a practical guide. Prepared for Bureau of Mines, Washington, DC, OFR 52-83, 206 pages.
  • 17. Gay N.C., Spencer D., Van Wyk J. J., Van Der Heever P. K., (1984), The control of geological and mining parameters in the Klerksdorp Gold Mining District. Proceedings of the First International Congress on Rockburst and Seismicity in Mines, Johannesburg, 1982, pp. 107-120.
  • 18. McGarr Α., Bicknell J., Sembera E., Green R.W.E., (1987), Analysis of Exceptionally Large Tremors in Two Gold Mining Districts of South Africa. Fred Leighton Memorial Workshop on Mining Induced Seismicity. CIM August 30- September 3, pp. 23-38.
  • 19. Gay N.C., Spencer D., Van Wyk J. J., Van Der Heever P. K, (1984), The control of geological and mining parameters in the Klerksdorp Gold Mining District. Proceedings of the First International Congress on Rockburst and Seismicity in Mines, Johannesburg, 1982, pp. 107-120.
  • 20. McGarr Α., (1992), Violent Deformation of Rock near Deep-Level, Tabular Excavations -Seismic Events. Bulletin of the Seismological Society of America, 1, No. 5, 1453-1466 (1971). 4. Wong, LG., Recent developments in rockburst and mine seismicity research. Proceedings of the 33rd US Symposium on Rock Mechanics, pp. 1103-1112.
  • 21. McGarr Α., (1984), Some Applications of Seismic Source Mechanism Studies to Assessing Underground Hazard. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 199-208.
  • 22. Bath M., (1984), Rockburst Seismology. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 7-15.
  • 23. Calder P.N., Archibald J.f., Madsen D., Bullock Κ., (1988), High Frequency Precursor Analysis Prior to a Rockburst. Second International Symposium of Rockbursts and Seismicity in Mines, 2, June 8-10, Minneapolis, Minnesota, 223-234.
  • 24. Lasocki S., (1990), Prediction of strong mining tremors. Zesz. Nauk. Akad. Gorn.-Hutn., Geofiz. Stosowana 7, 1-110.
  • 25. Hedley D.G.F., (1992), Rockburst Handbook for Ontario Hardrock Mines. Mining Research Laboratories, CANMET Special Report SP92-IE, 305 pages.
  • 26. Stewart R.D., Spottiswoode S.M., (1993), A technique for determining the seismic risk in deep-level mining. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 123-128.
  • 27. Gibowicz S.J., (1984), The Mechanism of Large Mining Tremors in Poland. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 17-28.
  • 28. Swanson P.L., Sines CD., (1996), Characteristics of Mining-Induced Seismicity and Rock Bursting in a Deep Hard-Rock Mine. Report of Investigations/1991. US Department of the Interior, Bureau of Mines, RI9393, 12 pages (1996).
  • 29. Gibowicz S.J., Young R.P., Talebi S., Rawlence, D.J., (1991), Source parameters of seismic events at the underground research laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than -2, pp. 1157-1182.
  • 30. Talebi S., Young R.P., (1988), Characterizing Microseismicity Associated with Stope Development. Second International Symposium of Rockbursts and Seismicity in Mines, 2. June 8-10, Minneapolis, Minnesota, 257-277.
  • 31. Feignier B., Young R.P., (1992), Moment Tensor Inversion of Induce Microseismic Events: Evident of Non-Shear Failures in the -4 < Μ < -2 Moment Magnitude Range. Geophysical Research Letters.
  • 32. Stickney Μ., Sprenke C, Kenneth F., (1992), A microseismic study of the Coeur d'Alene mining district, Northern Idaho. Proceedings of the 33rd U.S. Symposium on Rock Mechanics, Balkema, Rotterdam, pp. 1087-1091.
  • 33. Swan G., Semadeni T., (1992), Rockbursts in a Development Drift: Field Observations. Proc. Induced Seismicity Workshop, Santa Fe, ed. C. Ramseyer.
  • 34. Urbancic T.I., (1992), Source Studies of Mining Induced Microseismicity at Strathcona Mine, Sudbury, Canada: a Spatial and Temporal Analysis. Engineering Seismology Laboratory, Department of Geological Sciences, Queen's University.
  • 35. Urbancic Τ.I., Feustel A.J., Marisett S., (1994), Source Studies of Mining-Induced Seismicity at Creighton Mine, Sudbury, Canada: Analysis of Seismicity Related to the mN 2.1 Rockburst of October 29, 1992. ESG Report to PMC-CRRP, 71 pages (1994).
  • 36. Ishida T., Uchita Y., (1992), Fault-plane solutions of microseismicity induced by progressive excavations of a large underground chamber. Rockbursts and Seismicity in Mines, Young (ed.) Balkema, Rotterdam, pp. 195-197.
  • 37. Williams T.J., Girard J.M., Wideman C.J., (1993), Investigation of a 3.5 ML rockburst. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 267-271.
  • 38. Trifu C.I., Urbancic T.I., (1995), Fracture Coalescence as a Mechanism for Earthquakes: Observations based on Mining Induced Microseismicity.
  • 39. Boler F.M., Swanson P.L., (1993), Modelling of a destress blast and subsequent seismicity and stress changes. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 35-40.
  • 40. Scott D.F., Williams T.J., White B.C., (1993), Host structures for slip-induced seismicity at the Lucky Friday Mine. Rockbursts and Seismicity in Mines, Young (ed.) Balkema, Rotterdam, pp. 245-248.
  • 41. Joughin N.C., Jagger A.J., (1983), Fracture of rock at stope faces in South African gold mines. Rockbursts: prediction and control. ΓΜΜ London, England, October 20, pp. 53-66.
  • 42. Gay N.C., (1993), Mining in the vicinity of geological structures - An analysis of mining induced seismicity and associated rockbursts in two South African mines. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 57-62.
  • 43. Bawden W.F., (1993), Some Ideas on the Use of Mine Induced Seismic Monitoring to Characterize a Fractured Rockmass Based on a Conceptual Stress-Velocity-seismicity-Geomechanical Model. Geotechnical Instrumentation and Monitoring in Open Pit and Underground Mining, Balkema.
  • 44. Wong I.G., (1987), Coal-Mining-Induced Seismicity in Central Utah, U.S.A.: Seismic events due to pure shear and shear-implosional (?) failure. Fred Leighton Memorial Workshop on Mining Induced Seismicity. CIM August 30 - September 3, Montreal, Canada, pp. 267-271.
  • 45. Bird S.C., (1993), Linkage of Structural Mapping, Numerical Modelling and Microseismic Source Parameters with Application to Mine Design. M.Sc. Thesis, Queen's University, Mining Engineering Department.
  • 46. Bawden W.F., Mercer R.A., (1994), Review of Parameters for Integrated Analysis of Seismic and Non-Seismic Datasets. Queen's University.
  • 47. Kusznir N.J., Al-Saigh N.H., Ashwin D.P., (1984), Induced Seismicity Generated by Longwall Coal Mining in the North Staffordshire Coal-field, U.K. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 153-162.
  • 48. Connors C.F., Urbancic T.I., Bawden W.F., Young R.P., (1993), Constraining Numerical Models with Geomechanical Data and Microseismic Fault-Plane Solutions. Int. J. Rock Mech. Min. Sei. and Geomech. Abstr., 30, 1371-1377.
  • 49. Board M., (1996), Summary of Numerical Examination of Mining-Induced Seismicity in Canadian Rockburst Support Handbook. Geomechanics Research Centre, Laurentian University, Sudbury, Ontario, 28 pages.
  • 50. Semadeni T., Rochon P., Niewiadomski J., (1988), Waveform Analysis of Mine Induced Seismic Events Recorded at Rio Algom's Quirke Mine. Second International Symposium of Rockbursts and Seismicity in Mines, June 8-10, Minneapolis, Minnesota, pp. 267-277.
  • 51. Hemp DA., Goldbach O.D., (1993), The effect of backfill on ground motion in a stope. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 75-79.
  • 52. Siebrits E., Hildyard M.W., Hemp DA., (1993), Stability of backfilled stopes under dynamic excitation. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 117-121.
  • 53. Butler A.G., van Aswegen G.V., (1993), Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 41-49.
  • 54. McGarr Α., (1993), Keynote address: Factors influencing the strong ground motion from mining-induced tremors. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 3-12.
  • 55. Hedley D.G.F., (1988), Peak Particle Velocity for Rockbursts in Some Ontario Mines. Second International Symposium of Rockbursts and Seismicity in Mines, 2, June 8-10, Minneapolis, Minnesota, 503-512 (1988).
  • 56. Blake W., Cuvelier D.J., (1988), Developing reinforcement requirements for rockburst conditions at Hecla's Lucky Friday Mine. Second Int. Symp. of Rockbursts and Seismicity in Mines. June 8-10, Minneapolis, Minnesota, pp. 589-597.
  • 57. Kaiser P.K., (1993), Keynote address: Support of tunnels in burst-prone ground - toward a rational design methodology. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 13-27.
  • 58. Drzęźla Β., Garus Α., Kijko Α., (1985), Energy distribution of largest mining tremors and their connection with geologic structure of rock mass. Ninth Plenary Scientific Session/International Bureau of Strata Mechanics, Varna, June 18-21, pp. 257-26.
  • 59. Dempster E.L., Tyser J.A., Wagner H., (1983), Regional aspects of mining-induced seismicity: theoretical and management considerations. Proceedings of Conference on Rockbursts: prediction and control, ΓΜΜ, The Institution of Mining and Metallurgy, London, England, pp. 37-52.
  • 60. Langefors U. and Kihlstrom B., (1963), The modern technique of rock blasting. John Wiley and Sons, New York; Almquist and Wiksell, Stockholm.
  • 61. Owen G.N., Scholl R.F., (1981), Earthquake engineering of large underground structures. JAB-7821. San Francisco: URS/John A. Blume.
  • 62. Wagner H., (1984), Support requirements for Rockburst Conditions. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, June 8-10, pp. 209-221.
  • 63. Jesenak P., Kaiser P.K., Brummer R.K., (1993), Rockburst damage potential assessment -An update. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 81-85.
  • 64. Ortlepp W.D., (1984), Rockbursts in South African Gold Mines: A phenomenological view. Proceedings of the First International Congress on Rockburst and Seismicity in Mines, Johannesburg, 1982, pp. 165-178.
  • 65. Yi, X., Kaiser P.K., (1993), Mechanisms of rockmass failure and prevention strategies in rockburst conditions. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 141-145.
  • 66. McGarr Α., Bicknell J., (1988), Estimation of the near-fault ground motion of mining-induced tremors from locally recorded seismograms in South Africa. Second International Symposium of Rockbursts and Seismicity in Mines, June 8-10, Minneapolis, Minnesota, pp. 379-388.
  • 67. Cook N.G.W., (1976), Seismicity Associated with Mining. Engineering Geology, 10, 99-122.
  • 68. Tinucci J.P., Spearing A.J.S., (1993), Strategic for clamping faults and dykes in high seismicity tabular mining conditions. Rockbursts and Seismicity in Mines, Young (ed.) Balkema, Rotterdam, pp. 435-440.
  • 69. Webber S.J., (1990), Numerical modelling of a repeated fault slip. J. S. Afr. Inst. Min. Metall., 90, No. 6, June 1990, 133-140.
  • 70. Ryder J.Α., (1988), Excess shear stress in the assessment of geologically hazardous situations. J.S. Afr. Inst. Min. Metall., 88, No. 1, 27-39.
  • 71. Spathis A.T., Blair D.P., Grant J.R., (1985), Seismic pulse assessment of the changing rock mass conditions induced by mining. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 22, No. 5, October 1985, 303-312.
  • 72. Feustel A.J., Urbancic T.I., Young R.P., (1993), Estimates of Q using the spectral decay technique for seismic events with Μ < -1.0. Rockbursts and Seismicity in Mines, Young (ed.) Balkema, Rotterdam, pp. 337-342.
  • 73. Churcher J.M., Spottiswoode S.M., (1987), Fred Leighton Memorial Workshop on Mining Induced Seismicity, CIM, August 30-September 3, Montreal, Canada, pp. 169-172.
  • 74. Fernandez L.M., Van Der Heever P.K., (1984), Ground Movement and Damage Accompanying a Large Seismic Event in the Klerksdorp District. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 193-198.
  • 75. McGarr Α., (1976), Seismic moments and volume changes. Journal of Geophysical Research, 81, No. 8, March 10, 1976,1487-1494.
  • 76. Spottiswoode S.M., (1981), Seismic Deformation Around Blyvooruitzicht Gold Mine. Acoustic Emission/Microseismic Activity in Geologic Structures and Materials. Proceedings of the Third Conference, Series on Rock and Soil Mechanics, 8, Pennsylvania, U.S., 577-590.
  • 77. Głowacka Ε., (1993), Excavated volume and long-term seismic hazard evaluation in mines. Rockbursts and Seismicity in Mines, ed. Young, Balkema, Rotterdam, pp. 69-73.
  • 78. Gorbunova I.V., Kal'met'eva Z.A., Voinov K.A., (1988), Determining the direction of fracturing from rockburst recordings. Soviet Mining Science, 24, No. 2, March-April, 1988, 25-36.
  • 79. Holmes R.D., Reeson J.A., (1988), Excess Shear Stress (E.S.S.) A Case Study. Second International Symposium of Rockbursts and Seismicity in Mines, 2, June 8-10, Minneapolis, Minnesota, 475-487.
  • 80. Hanks T.C., (1977), Earthquake stress drops, ambient tectonic stress and stresses that drive place motions. Pure Appl. Geophys., 115,441-448.
  • 81. Eneva M. and Young R.P., (1993), Evaluation of spatial patterns in the distribution of seismic activity in mines: A case study of Creighton Mine, northern Ontario (Canada). Rockbursts and Seismicity in Mines, Young (ed.) Balkema, Rotterdam, pp. 175-180.
  • 82. Young R.P., Talebi S., (1988), Seismological Techniques in the Study of Mining Induced Rock Mass Instability. 15th Canadian Rock Mechanics Symposium, Rock Engineering for Underground Excavations, October 3-4, 1988, University of Toronto, pp. 221-233.
  • 83. Archibald J.F., Calder P.N., Moroz Β., Semadeni Τ., Yeo T.K., (1988), Applications of microseismic monitoring to stress and rockburst precursor assessment. Mining Science and Technology, Elsevier Science Publisher B.V., Amsterdam, pp. 123-132.
  • 84. Pakalnis V., (1981), Strength and Limitations of Microseismic Monitoring for Rockburst Control in Ontario Mines. Acoustic Emission/Microseismic Activity in Geologic Structures and Materials. Proceedings of the Third Conference, Series on Rock and Soil Mechanics, 8 (1984) Pennsylvania, US, 549-558.
  • 85. Kijko Α., Fund C.W., Brink A.V.Z., (1993), Identification of anomalous patterns in time-dependent mine seismicity. Rockbursts and Seismicity in Mines, Young (ed.) Balkema, Rotterdam, pp. 205-210.
  • 86. Mendecki A.J., (1996), Quantitative Seismology and Rockmass Stability. Geomechanics Issues for Excavations at Depth. Presented at PDS'96. April 17, 1976. Toronto, Canada, 13 pages (1996a).
  • 87. Gil H., (1991), The theory of strata mechanics. Warszawa-PWN, Amsterdam-Elsevier.
  • 88. Mandelbrot Β. B., (1977), Fractals: Form chance, and Dimension. Freeman, W. H. and Company, San Francisco.
  • 89. Korvin G., (1992), Fractal Models on the Earth Sciences. Elsevier Sei. Pub.
  • 90. Utsu T. (1969), Aftershocks and Earthquake Statistics (I), J. Fac. Sei. Hokkaido Univ., ser. VII, 3, 129-195.
  • 91. Kagan Y. Y., Knopoff L., (1980), Spatial Distribution of Earthquakes: The two-point Correlation Function, Geophys. J. R. Astr. Soc. 62, 697-717.
  • 92. Domański Β., (1997), Comparison of Source Parameters of Seismic Events at Polish Coal and Copper Mines. Rock burst and Seismicity in Mines. ISBN 90 5410 8908, 101-107.
  • 93. Tadashi Hirabayashi, Keisuke Ito, Toshikatsu Yoshii, (1992), Multifractal Analysis of Earthquakes, Pageoph, vol. 138, No. 4.
  • 94. Cosentino P., De Luca L., Luzio D., (1997), Evaluation of fractal dimension estimates: Quantitative differentiator of seismicity clusters. Proc. Of the 4* international symposium on rockbursts and seismicity in mines. Kraków. Poland. 11-14 august 1997.
  • 95. Mortimer Z., (1997), Fractal statistics for the local induced seismicity in some Polish coal mines. Proc. of the 4lh international symposium on rockbursts and seismicity in mines. Krakow. Poland. 11-14 august 1997.
  • 96. Rudnicki J. W., (1980), Fracture Mechanics Applied to the Earth's Crust, Annual Rev. Earth and Planetary Sei. 8, 489-525.
  • 97. Li V.C., (1987), Mechanics of shear rupture applied to earthquake zones. In Fracture Mechanics of Rock (ed. Atkinson, Β. Κ., Acad. Press, London 1987. 351-428.
  • 98. Das S., Aki K., (1977). Fault Planes with Barriers: A Versatile Earthquake Model, J. Gopphys. Res. 82, 5658-5670.
  • 99. Freund L. B., (1990), Dynamic Fracture Mechanics. Cambridge University Press, Cambridge 1990.
  • 100. Rice J. R., (1980), The mechanics of earthquake rupture. W pracy Physics of Earth's Interior ( ed. Dziewoński Α., Boschi, Ε., North Holland, Amsterdam 1980, 555-649.
  • 101. Scholz C. H.,(1990) The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge 1990.
  • 102. Huang J., Turcotte D. L.,(1992), Chaotic Seismic Faulting with Mass-spring Model and Velocity-weakening Friction. Pageoph, Vol. 138, No 4(1992) pp.569-589.
  • 103. Ito K., Matsuzaki M. (1990), Earthquakes as Self-organized Critical Phenomena, J.Geophys. Res. 95, 6853-6860.
  • 104. Newman W.I., Turcotte D.L., Gabrielov Α., (1996), A hierarchical model for precursory seismic activation. SFI Studies in the Sciences of Complexity, Vol. XXV, Addison-Wesley. Pp. 243-259.
  • 105. Tang C.A., Hudson J.A., (1993), Rock failure instability and related aspects of earthquake mechanism. Part I - IV, Submission to Earthquake Engineering and Structural Dynamics.
  • 106. Lemaitre J., (1992), A Course on Damage Mechanics. Springer-Verlag.
  • 107. Kachanov L.M., (1986), Introduction to continuum damage mechanics. Klu. Acad. Pub.
  • 108. Awrejcejewicz J., (1996). Drgania deterministyczne układów dyskretnych. WNT, Warszawa.
  • 109. Burridge R., Knopoff L., (1967), Model and Theoretical Seismicity, Bull. Seismol. Soc. Am. 57, 341 -371.
  • 110. Schuster Η. G., (1995), Chaos deterministyczny, PWN Warszawa.
  • 111. Kemeny J. M., Hagaman R. M., (1992), An Asperity Model to Simulate Rupture along Heterogeneous Fault Surface. Pageoph, vol 138,4, 549-567.
  • 112. Kassir Μ. Κ., Sih G. C, Three-dimensional Crack Problems (Noordhoff International Publishing, Leyden 1975)
  • 113. Narteau C, Formation and evolution of a population of strike-slip faults in a multiscale cellular automaton model. Geophys. J. Int. (2000) 142.
  • 114. Shannon C.E., A mathematical theory of communication, The Bell System Technical J. 27(1948) 623; 27 (1948) 379.
  • 115. Żurek W.H., (editor), Complexity, Entropy and Physics of Information, Addison-Wesley, Redwood City (1990).
  • 116. Geiger L. (1912), Probability method for the determination of earthquake epicenters from the arrival time only. Bull. St. Louis Univ. 8, 60-71.
  • 117. Buland, R. (1976), The mechanics of locating earthquakes. Bull. Seism. Soc. Am. 66, 173 - 187.
  • 118. Drzęźla Β., Mendecki Α., (1977), Nowe metody poziomej lokalizacji ognisk wstrząsów górotworu. Zeszyty Nauk. Pol. SI. Górnictwo 87. 27-41.
  • 119. Drzęźla B., Mendecki Α., (1979), Lokalizacja przestrzenna lokalizacji ognisk wstrząsów górotworu według metody S-P i wyznaczenie prędkości fal sejsmicznych.. Zeszyty Nauk. Pol. Śl. Górnictwo 99. 68-77.
  • 120. Drzęźla B., Mendecki Α., (1982), Anizotropia górotworu a dokładność lokalizacji ognisk wstrząsów. Zeszyty Nauk. Pol. SI. Górnictwo 116. 23-35.
  • 121. Kołodziejczyk P., Wanat K., (1990), Lokalizacja wstrząsów górniczych z uwzględnieniem anizotropii prędkości fal sejsmicznych. ZN Pol. SI., Górnictwo, z. 188.
  • 122. Kołodziejczyk P., Wanat K., (1995), Zastosowanie apriorycznej informacji typu dyrektywa (D) do lokalizacji kopalnianych zjawisk sejsmicznych. Pubis. Inst. Geophys. Pol. Acad. Sc., M.-19 (281).
  • 123. Kołodziejczyk P., Wanat K., (1995), Optymalizacja kopalnianych sieci sejsmometrycznych w aspekcie ich rozbudowy o kolejne stanowiska. Mat. II Szkoły Geomechaniki, Ustroń, 17-20 października, 1995.
  • 124. Kołodziejczyk P., Wanat K., (1996), Possibility of dimension decrease in the problem of seismic events location. Acta Montana A, No 9(100), 51-54. 1996 r.
  • 125. Kołodziejczyk P., Wanat K., Jaworski Α., (1997), Algorytmy genetyczne w zagadnieniach górniczych. Zeszyty Naukowe Pol. SI. 236.
  • 126. Wanat K.,(1997), Lokalizacja udarów w anizotropnoj sredie. UKD 622.831.32 Sankt Peterburg 1977.
  • 127. Aki Κ., Lee W. Η. Κ. (1976), Determination of three-dimensional velocity anomalies under a seismic array using first Ρ arrival times from local earthquakes. 1. A homogeneous initial model. J. Geophys. Res. 81, 4381-4399
  • 128. Matsu'ura M., (1984), Bayesian estimation of hypocenter with origin time elimination. J. Phys. Earth, 32, 469-483.
  • 129. Pavlis G.L., Booker J.R., (1983), Progressive multiple event Location. Bui. Of Seism. Soc. Of Amer. Vol 73, No 6, 1753-1777.
  • 130. Kijko Α., (1977), Metody optymalnego planowania regionalnych sieci sejsmicznych. PAN, Instytut Geofizyki, Warszawa.
  • 131. Wanat K., (1999), Lokalizacja ognisk wstrząsów górniczych z długości zapisu sejsmogramów. Zeszyty Naukowe Pol. SI. 244.
  • 132. Rorke A.J., Roering C., (1984), Source Mechanism Studies of Mine-induce Seismic Events in a Deep-level Gold Mine. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 51-55.
  • 133. Bourbonais J., (1981), A Research Application of Multi-Channel Microseismic Monitoring to Rock Bursting at the East Malartic Mine in Northwestern Quebec. Proceedings of the Third Conference on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials, pp.251-268.
  • 134. Hasegawa H.S., Wetmiller R.J., Gendzwill D.J., (1989), Induced seismicity in mines in Canada - An Overview. Pageoph, 129, Nos. 3/4, 423-453.
  • 135. Urbancic T.I., Trifu C.I., (1995), Remote Triggering of Large Seismic Events in Mines: Evidence Based on the Spatial and Temporal Migration of Microseismic Events Along Increasing Stress Gradients. Engineering Seismology Group, Kingston.
  • 136. Dubinski J., (1994), Związki przyczynowe wstrząsów i tąpań. Przegląd Górniczy nr 2, Ο¬ΙΟ.
  • 137. Hedley D.G.G., Wetmiller R.J., (1985), Rockbursts in Ontario mines during 1984. Special Report SP8505, CANMET, Energy, Mines and Resources Canada.
  • 138. Salamon M.D.G., (1983), Rockburst hazard and the fight for its alleviation in South African gold mines. Rockbursts: prediction and control. IMM, London, Ontario. October 10, pp. 11-36.
  • 139. Scott D.F., (1981), Relationship of Geologic Features to Seismic Events, Lucky Friday Mine, Mullan, Idaho. Second International Symposium of Rockbursts and Seismicity in Mines, 2, June 8-10, Minneapolis, Minnesota, 579-588 (1988).
  • 140. Brummer R.K., Rorke A.J., (1988), Case Studies of Large Rockbursts in South African Gold Mines. Second International Symposium of Rockbursts and Seismicity in Mines, 2, June 8-10, Minneapolis, Minnesota, 461-473.
  • 141. Shepherd J., Blackwood R.L., Rixon L.K., (1984), Instantaneous Outbursts of Coal and Gas with Reference to Geological Structures and Lateral Stresses in Collieries. Proceedings of the First International Congress on Rockbursts and Seismicity in Mines, Johannesburg, 1982, pp. 97-106.
  • 142. Stevens K., (1984), Large-Scale Rockburst-Related Structure Delineation: Application to Mine Planning, Creighton Mine, INCO Ltd., Sudbury, Ontario, 78 pages (1995). 31.
  • 143. Quesnel W.J.F., Hong R., (1987), Mining Induced Seismicity: Monitoring and Interpretation. Fred Leighton Memorial Workshop. CIM. August 30-September 3, Montreal, Canada, pp. 227-235.
  • 144. Yager R. R., Filev D. P., (1994), Essentials of Fuzzy Modeling ana Control. Jon Wiley & Sons, Inc.
  • 145. Crosson R. S. (1976), Crustal structure modeling of earthquake data. 1. Simultaneous least squares estimation of hypocenter an velocity parameters. J. Geophys. Res. 81, 3036-3046.
  • 146. Mendecki A. J. (1987), Rock mass anisotropy modelling by inversion of mine tremor data. In Proceedings of the 6th International Congress on Rock Mechanics (G. Herget and S. Vongpaisal, eds.) pp. 1151-1144, Balkema, Rotterdam.
  • 147. Mendecki A. J. (1997), Seismic Monitoring in Mines. Chapman & Hall.
  • 148. Dubinski J., Konopko W. (2000), Tąpania., Katowice GIG 2000. ISBN 83-87610-23-2.
  • 149. Wanat K., (1993), Algorytmy numeryczne., DIR Gliwice.
  • 150. De Jong Κ. Α. (1976), Artificial genetic adaptive systems (technical Report No. 76-7). Pittsburgh: University of Pittsburgh, Department of computer Science.
  • 151. Goldberg D. E., Richardson J. (1987), Genetic algorithms with sharing for multimodal function optimisation. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 471 - 482.
  • 152. Hanks T. C, Kanamori, H., (1979), A moment magnitude scale. J. Geophys. Res. 84, 2348-2350.
  • 153. Aki K., Richards P. G. (1980), Quantitative Seismology. Theory and Methods, Freeman, San Francisco.
  • 154. Hausdorff F., (1918), Dimension und Äusseres Mass. Math. Ann., 157-179.
  • 155. Kolmogorov Α. Ν. (1958), A new invariant for transitive dynamical system. Doki. Akad. Nauk SSSR, 119, 861-864.
  • 156. Forrest S.R., Witten, T.A., (1979), Long-range correlation in smoke-particle aggregates. J. Phys.,A, 12, 109-117.
  • 157. Balatoni J., Renyi Α., (1956), On the notion of entropy. Vol. I. Academic Press, Budapest, 558-587.
  • 158. Von Koch H. (1906), Une methode geometrique elementaire pour l'etude de certaines questions de la theory des courbes planes. Acta. Math., 30: 145-174.
  • 159. Takayasu Η., Fractals in the Physical Sciences (Manchester Univ. Press. Manchester 1990).
  • 160. Hirabayashi T., Ito K., Yoshii T., (1992), Multifractal analysis of earthquakes. PAGEOPH, vol. 138, no. pp.592-610.
  • 161. Mendes France M., (1984), Folding paper and thermodynamics. Phys. Rep., 103(1-4): 161-172.
  • 162. Mendes France M., (1989), Chaos implies confusion. In: M.M. Dodson and J.A.G. Vickers (Editors), Number Theory and Dynamical Systems. Lond. Math. Soc. Lect. Note Ser. 134, Cambridge Univ. Press, Cambridge, pp. 137-152.
  • 163. Lemaitre J., A Continuous Damage Mechanic for Ductile Fracture, J. of Eng. Materials and Technology, 107, January, 1985, pp. 83-89.
  • 164. Kostrov V., (1974), Seismic moment and energy of earthquakes, and seismic flow of rock. Izd. Acad. Sei. USRR Phys. Solid Earth, 1, pp 23-44.
  • 165. Kostrov B.V., Das S. (1974). Principles of Earthquake Source Mechanics, Cambridge University Press, Cambridge (U.K).
  • 166. Kruse R., Gebhard J., Klawonn F., (1994), Foundations of Fuzzy Systems. New York: Jon Wiley and Sons.
  • 167. Zadeh L.A., Fuzzy sets. Information and Control 8, 338-353, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0010-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.