PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Powstawanie i rozpad agregatów ciała stałego zawieszonych w cieczy

Autorzy
Identyfikatory
Warianty tytułu
EN
Formation and breakage of solid aggregates suspended in liquid
Języki publikacji
PL
Abstrakty
PL
W pracy podjęto teoretyczno - doświadczalną analizę zachodzących równocześnie procesów powstawania i rozpadu agregatów ciała stałego zawieszonych w mieszanej cieczy. Dokonano przeglądu prac dotyczących powstawania i rozpadu agregatów. Przeprowadzono badania doświadczalne związane z tymi procesami dla dwóch rodzajów pyłu kredowego i czterech rodzajów monodyspersyjnych kulek z lateksu zawieszonych w wodzie destylowanej w obecności wielkocząsteczkowego, polimerowego związku powierzchniowo czynnego o nazwie handlowej Zetag 63. Doświadczenia wykonano na dwóch instalacjach laboratoryjnych wyposażonych w mieszadła: turbinowe (dwa rodzaje) wibracyjne, (trzy rodzaje) i śmigłowe. Badania dotyczyły warunków, w których ruch cieczy w mieszalnku miał charakter burzliwy. Pomiary dla pojedynczej serii prowadzono początkowo dla niższych wartości średniej globalnej szybkości dyssypacji energii epsilon, uzyskując agregację, a po osiągnięciu stanu ustalonego wprowadzono skokową zmianę epsilon, powodując rozpad dopiero co powstałych agregatów. Dla kulek z lateksu ograniczono się do etapu z przeważającą agregacją. Próbki zawiesiny pobierane w ściśle określonych interwałach czasowych analizowano pod kątem składu ziarnowego i średnich rozmiarów Sautera populacji agregatów d32 w laserowych analizatorach cząstek (Malvern 3600Ec i Analysette 22 firmy Fritsch). Na podstawie uzyskanych wyników stwierdzono, że zachodzące w mieszalnikach procesy agregacji i rozpadu dążą w swym przebiegu do osiągnięcia stanu dynamicznej równowagi, a wartość epsilon decyduje o tym, czy przeważa agregacja lub rozpad. Agregacja zachodziła zgodnie z mechanizmem ortokinetycznym, a rozmiary cząstek pierwotnych i agregatów przemawiały za dominującym wpływem procesów zachodzących w lepkościowym podzakresie dyssypacji energii kinetycznej turbulencji. Rozpad miał charakter kawałkowy, potwierdzony przez uzyskane wyniki rozkładów ziarnowych oraz zdjęcia mikroskopowe próbek agregatów (mikroskopy typu Vickers i Olympus CH30). Oba procesy miały charakter częściowo odwracalny. Do opisu ewolucji agregatów wykorzystano model matematyczny (w dwóch wersjach) oparty na metodzie skupionej równań bilansu populacji (RBP) i połączony z odpowiednimi założeniami dotyczącymi kinetyki procesu i struktury agregatów. W wersji niefraktalnej modelu założono stałą porowatość agregatów, a w wersji fraktalnej przyjęto, że agregaty są fraktalami masowymi opisanymi jednym wymiarem fraktalnym dr w całym zakresie rozmiarów. W modelowaniu kinetyki, w celach upraszczających, nie brano pod uwagę lokalnych warunków przepływu w mieszalniku, natury sił odpowiedzialnych za agregację i rozpad, a także kompozycji zawiesiny, uzależniając parametry kinetyczne agregacji i rozpadu beta a,0 i beta r,0, wyłącznie od rozmiarów agregatów i ich struktury. W rozwiązaniu układu RBP zastosowano specjalnie opracowaną procedurę w języku Turbo Pascal, którą wyznaczono optymalne wartości beta a,0 i beta r,0 w taki sposób, aby uzyskać najlepsze dopasowanie rozkładów ziarnowych obliczonych za pomocą modelu i otrzymanych w doświadczeniach. Uzyskano zadowalającą zgodność rozkładów ziarnowych dla obu wariantów modelu. Na podstawie otrzymanych wyników dobrano postać funkcji rozpadu (parametr a=1/3) oraz przeanalizowano wpływ średniej globalnej szybkości dyssypacji energii epsilon na beta a,0 i b e,0. Stwierdzono, że główną przyczyną zróżnicowania wyników otrzymanych dla mieszadeł różnego typu są różne wartości współczynnika prawdopodobieństwa zderzeń i inna odporność agregatów na rozpad. Badania eksperymentalne pozwoliły na identyfikację mechanizmów agregacji i rozpadu w złożonym przypadku, gdy procesy te występują równocześnie. Zaproponowany model matematyczny (pomimo pewnych założeń upraszczających) wraz z opracowaną procedura obliczeń numerycznych, pozwalający na wyznaczenie optymalnych wartości parametrów kinetycznych beta a,0 i beta r,0 może być z powodzeniem stosowany do opisu podobnych układów fizykalnych. Nie otrzymano jednoznacznej odpowiedzi dotyczącej wyboru wariantu niefraktalnego lub fraktalnego modelu. Można natomiast sądzić, że skomplikowanie modelu przez założenie innego charakteru funkcji rozpadu, przyjęcie multifraktalnej struktury agregatów, jak również uwzględnienie wpływu rozkładu chwilowych wartości szybkości dyssypacji energii w zawiesinie na kinetykę procesu powinno poprawić dokładność otrzymanych wyników.
EN
A theoretically experimental analysis dealing with simultaneously occurring aggregation and breakage processes of solid particles suspended in liquid has been presented. A survey of literature concerning processes mentioned has been performed. The experimental tests for two types of chalk particles, four monodispersed latex spheres suspended in water in the presence of high-molecular, polymer surfactant called Zetag 63 have been carried out. The experiments were performed in two laboratory set-ups equipped with: the turbine (two types), vibrating (three types) and propeller impellers. Suspension in a tank was stirred turbulently in all cases. A typical measuring run started at a lower value of bulk-averaged energy dissipation rate in the tank epsilon, for which aggregation was obtained. Then, when steady state was achieved, a step change in epsilon was introduced and breakage of just formed aggregates took place. For latex spheres tests were restricted to the period with prevailing aggregation. Samples of suspensions were taken in appropriate time intervals and analysed in the laser particle analysers for PSD and the Sauter mean diameter of aggregates, d32 (Malvern 3600Ec and Analysette 22 of Fritsch). It has been stated that aggregation and breakage processes have a tendency to obtain a state of dynamic equilibrium, and their course a value of epsilon decided which of them (i. e. aggregation of breakage) prevailed. The mechanism of aggregation exhibited the orthokinetic characteristic while a size of initial particles and aggregates proved the viscosity subrange of turbulence. Breakage showed the lump characteristics confirmed by a shape of PSDs and microscopic photographs of aggregates (microscopes: Vickers and Olympus (CH30). In description of the aggregate evolution, a mathematical model (in two versions) based on lumped discrete population balance equations solving method and appropriate assumptions dealing with the process kinetics and aggregate structure was employed. In the non-fractal version, it was assumed that aggregates showed a constant porosity, whereas in the fractal version it was assumed that aggregates represented mass fractal objects described by one fractal dimension, df, in the whole size range. In kinetics modeling, due to simplifying approach, local flow conditions in the tank, characteristic of aggregation and breakage forces and also composition of suspension have not been taken into account. Process kinetic parameters beta a,o and beta r,0 depended only on aggregate size and structure. The population balance equations were solved using specially written procedure in Turbo Pascal language. The procedure enabled one to calculate optimum values of beta a,0 and beta r,0 in such a way that the best fit of experimental and measured PSDs was obtained. An acceptable compatibility between PSDs was achieved for both variants of the model. Based on the calculation results, the best shape of breakage function was selected (parameter a=1/3) and an influence of the bulk-averaged energy dissipation rate, epsilon, on beta a,0 and beta r,0 was determined. The main reason of differentitation of the results for different impeller types lies possibly in different values of aggregation probability coefficients and different aggregates' resistance against beakage. The researches carried out enabled one to identify correctly aggregation and breakage mechanisms in such a compound case where both of them occurred simultaneously. The mathematical model proposed (despite a number of simplified assumptions), together with the numerical procedure for calculation of the values of kinetic parameters, beta a,0 and beta r,0, can be successfully used in a description of physically similar systems. However, an unequivocal answer concerning the selection between the non-fractal and fractal model variant has not been obtained. Introduction of a more compound breakage function, mulitfractal character of aggregates or an influence of energy dissipation rate distribution in the tank should improve the model.
Rocznik
Tom
Strony
5--133
Opis fizyczny
bibliogr. 253 poz.
Twórcy
  • Katedra Inżynierii Chemicznej i Procesowej Politechnika Śląska, 44-100 Gliwice, ul.Strzody 7 tel. (032) 237-27-70, andrzej.gierczycki@polsl.pl
Bibliografia
  • 1. Abrahamson J., Collision rate o f small particles in a vigorously turbulent fluid, Chem. Engng Sci., 30, 1371 (1975).
  • 2. Adetayo A.A., Ennis B.J., Unifying Approach to Modeling Granule Coalescence Mechanisms, AIChE J., 43, 927(1997).
  • 3. Aeschbach S. and Bourne J.R., The Attainment o f Homogeneous Suspensions in a Continuous Stirred Tank, Chem. EngJ., 4, 234(1972).
  • 4. Akers R.J., Rushton A.G. and Stenhouse J.I.T., Floe breakage: the dynamic response o f the particle size distribution in a flocculated suspension to a step change in turbulent energy dissipation, Chem. Engng Sci., 42, 787(1987).
  • 5. Akiyama T., Iguchi T., Aoki K., Nishimoto K., A fractal analysis o f solids mixing in two-dimensional vibrating particle beds, Powder Techn., 97, 63 (1998).
  • 6. Allen T., Particle Size Measurement, Chapman and Hall, London 1975.
  • 7. Anielak A.M., Chemiczne i fizykochemiczne oczyszczanie ściekow, PWN, Warszawa 2000.
  • 8. Argaman Y. and Kaufman W.J., Turbulence and flocculation, J. San. Eng. Div., ASCE, SA2, 223, April (1970).
  • 9. Artelt C., Schmid H.-J., Peukert W„ On the relevance o f accounting for the evolution o f the fractal dimension in aerosol process simulations, Aerosol Science, 34, 511 (2003).
  • 10. Atkins P.W., Chemia fizyczna, wyd. VI, PWN, Warszawa 2001.
  • 11. Atkins P.W., de Paula J., Atkins’ Physical Chemistry, seventh ed., Oxford University press Inc., New York 2002.
  • 12. Atteia O., Evolution o f size distributions o f natural particles during aggregation: modelling versus field results. Colloids Surfaces A, 139, 171 (1998).
  • 13. Ayazi Shamlou P. and Titchener-Hooker N., Turbulent aggregation and breakup o f particles in liquids in stirred vessels, w Ayazi Shamlou P. (Ed.), Processing o f Solid-Liquid Suspensions, Butterworth-Heineman, Oxford 1993.
  • 14. Ayazi Shamlou P., Makagiansar H.Y., Ison A.P and Lilly M.D., Turbulent breakage o f filamentous microorganisms in submerged culture in mechanically stirred bioreactors, Chem. Engng Sci., 49, 2621 (1994).
  • 15. Ayazi Shamlou P., Stavrinides S., Titchener-Hooker N. and Hoare M., Growth-independent breakage frequency o f protein precipitates in turbulently agitated bioreactors, Chem. Engng Sci., 49, 2647 (1994).
  • 16. Ayazi Shamlou P., Jones A.G. and Djamarani K., Hydrodynamics o f secondary nucleation in suspension crystallization, Chem. Engng Sci., 45, 1405 (1990).
  • 17. Ayazi Shamlou P., Gierczycki A.T., Titchener-Hooker N.J., Breakage o f floes in liquid suspensions agitated by vibrating and rotating mixers, Chem. EngJ., 62, 23 (1996).
  • 18. Ayazi Shamlou P., Synowiec P. and Zolfogharian A., Critical suspension conditions in stirred crystallizers, Chem. Eng. J., 5 5 ,4 5 (1994).
  • 19. Bache D.H. and Al-Ani S.H., Development o f a system for evaluating flock strength, Wat. Sci. Tech., 21, 529 (1989).
  • 20. Bagster D.F., Aggregate behaviour in stirred vessels, w Ayazi Shamlou P. (Ed.), Processing o f Solid-Liquid Suspensions, Butterworth-Heineman, Oxford 1993.
  • 21. Baldi G., Conti R. and Alaria E., Complete suspension o f particles in mechanically agitated vessels, Chem. EngngSci., 33,2 1 (1978).
  • 22. Baldyga J., Problemy mikromieszania burzliwego w inżynierii reaktorow chemicznych, XVI Ogolnopolska Konferencja Naukowa Inżynierii Chemicznej i Procesowej, materiały konferencyjne, t.I, Krakow-Muszyna 1998.
  • 23. Bałdyga J., Agregacja cząstek w przepływach burzliwych, VIII Ogolnopolskie Seminarium “Mieszanie”, Warszawa-Jachranka’99, Prace Wydziału Inż. Chem. i Proc. Politechniki Warszawskiej, T. XXV, z. 1-3, Warszawa 1999.
  • 24. Bałdyga J. and Bourne J.R., Calculation o f micromixing in inhomogeneous stirred tank reactors, Chem. Eng. Res. Des., 66, 33 (1988).
  • 25. Bałdyga J. and Bourne J.R., Drop Breakup and Intermittent Turbulence, J. Chem. Eng. Japan, 26, 738 (1993).
  • 26. Bałdyga J. and Bourne J.R., Interpretation o f turbulent mixing using fractals and multifractals, Chem. Engng Sci., 50,381 (1995).
  • 27. Bałdyga J. and Bourne J.R., Turbulent Mixing and Chemical Reactions, John Wiley&Sons, Chichester 1999.
  • 28. Bałdyga J. Henczka M., Krasiński A., Procesy dyspersji i mikromieszania oraz koalescencji i redyspersji w reaktorach wielofazowych, w Burghardt A. (redaktor naukowy), Reaktory wielofazowe i wielofunkcyjne dla podstawowych procesow chemicznych, biochemicznych i ochrony środowiska, Agencja Wydawnicza „ARGI” s.c., Wrocław 2003.
  • 29. Bałdyga J., Malepszy S., Burza W., Golis W., Łada A., Rozpad agregatow komorek roślinnych w intermittentnym polu burzliwym, VIII Ogolnopolskie Seminarium “Mieszanie”, Warszawa-Jachranka’99, Prace Wydziału Inż. Chem. i Proc. Politechniki Warszawskiej, T. XXV, z. 1-3, Warszawa 1999.
  • 30. Bałdyga J. and Podgorska W., Drop Break-up in Intermittent Turbulence: Maximum Stable and Transient Sizes o f Drops, Can. J. Chem. Eng., 76, 456 (1998).
  • 31. Bałdyga J. and Pohorecki R., Influence o f turbulent mechanical stresses on microorganisms, Appl. Mech. Rev., 51, 121-140(1998).
  • 32. Baron B., Metody numeryczne w Turbo Pascalu, Wyd. Helion, Gliwice 1994.
  • 33. Batchelor G.K., Mass transfer from small particles suspended in turbulent fluid, J. Fluid Mech., 98, 609 (1980).
  • 34. Beckman J.R. and Farmer R.W., Bimodal CSD barite due to agglomeration in an MSMPR crystallizer, AIChE Symp. Series, 83, 85 (1987).
  • 35. Biardi G., Giona M., Giona A.R., Chaos and Fractals in Chemical Engineering, chapter: Multiphase and Turbulent Flow, Proceedings o f the First National Conference, Rome, Italy, May 1994.
  • 36. Biggs S., Habgood M., Jameson G.J., Yao-de Yan, Aggregate structures formed via a bridging flocculation mechanism, Chem. Eng. J., 80, 13 (2000).
  • 37. Biggs C.A., Lant P. A., Modelling activated sludge flocculation using population balances, Powder Techn., 124, 201 (2002).
  • 38. Binbing Han, Akeprathumchai S., Wickramasinhe S.R. and Qian X., Flocculation o f Biological Cells: Experiment vs. Theory, AIChE J., 49, 1186 (2003).
  • 39. Blandin A.F., Mangin D., Rivoire A., Klein J.P. and Bossoutrot J.M., Agglomeration in suspension o f salicylic acid fine particles: influence o f some process parameters on kinetics and agglomerate final size, Powder Techn., 130. 316 (2003).
  • 40. Boadway J.D., Dynamic o f growth and breakage o f alum floe in the presence o f fluid shear, J. Environ. Eng Div., EE5, 901 (1978).
  • 41. Bolle G., Cametti C., Codastefano P. and Tartaglia P., Kinetics o f salt-induced aggregation in polystyrene lattices studied by quasielastic light scattering, Phys. Rev. A, 35, 837 (1987).
  • 42. Bordes C., Snabre P., Frances C. and Biscans B., Optical investigation o f shear- and time-dependent microstructural changes to stabilized and depletion-flocculated concentrated latex sphere suspensions, Powder Techn., 130, 331 (2003).
  • 43. Bos A.S. and Zuiderweg F.J., Size o f agglomerates in batchwise suspension agglomeration, Chem. Eng. Res. Des., 65, 187(1987).
  • 44. Bourgaize D., Jewell T.R., Bruiser R.G., Biotechnology. Demystifying the Concepts, Benjamin/Cummings, imprint o f Addison Wesley Longman, San Francisco 2000.
  • 45. Bramley A.S. and Hounslow M., Aggregation during precipitation from solution: I. Extracting rates from experimental data, praca niepublikowana, Dept. Chem Eng., Univ. Cambridge, 1995.
  • 46. Brown D.L. and Glatz C.E., Aggregate Breakage in Protein Precipitation, Chem. Engng Sci., 42, 1831 (1987).
  • 47. Bugay S., Escudie R. and Line A., Experimental Analysis o f Hydrodynamics in Axially Agitated Tank, AIChE J.. 48. 463 (2002).
  • 48. Camp T.R., Stein P.C., Velocity gradients and internal work in fluid motion, J. Boston Soc. Civ. Engns., 30, 219(1943).
  • 49. Chatzi E. and Lee J.M., Analysis o f Interactions for Liquid-Liquid Dispersions in Agitated Vessels, Ind. Eng. Chem. Res., 26, 2263 (1987).
  • 50. Coulaloglou C.A and Tavlarides L.L., Description o f interaction processes in agitated liquid-liquid dispersions, Chem. Engng Sci., 32, 1289 (1977).
  • 51. Crilly A.J., Eamshaw R.A., Jones H. (Eds.), Fractal and Chaos, Springer-Verlag, New York 1991.
  • 52. Csempesz F., Enhanced flocculation o f colloidal dispersions by polymer mixtures, Chem. Eng J.. 80, 43 (2000).
  • 53. Cvitanovic P. (Ed.), Universality in Chaos, Adam Hilger, Bristol & New York 1992.
  • 54. Davis J.T., A physical interpretation o f drop sizes in homogenizers and agitated tanks, including the dispersion o f viscous oils, Chem. EngngSci., 42, 1671 (1987).
  • 55. de Boer G.B J., Hoedemakers G.F.M. and Thoenes D., Coagulation in turbulent flow, part I, Chem. Eng. Res. Des., 67, 301 (1989).
  • 56. de Boer G.B.J., Hoedemakers G.F.M. and Thoenes D„ Coagulation in turbulent flow, part II, Chem. Eng. Res. Des., 67, 308 (1989).
  • 57. Delichatsios M.A., Particle Coagulation in Steady Turbulent Flows: Application to Smoke Ageing, J. Coll. Int. Sci., 78, 163 (1980).
  • 58. Degueldre C., Triay 1., Kim J., Vilks P., Laaksohariu M., Miekeley N., Groundwater colloid properties: a global approach, Applied Geochemistry, 15, 1043 (1999).
  • 59. Diemer R.B. and Olson J.H., A moment methodology for coagulation and breakage problems: Part 1 - analytical solution o f the steady-state population balance, Chem. EngngSci., 57 ,2 1 9 3 (2002).
  • 60. Diemer R.B. and Olson J.H., A moment methodology for coagulation and breakage problems: Part 2 - moment models and distribution reconstruction, Chem. Engng Sci., 57, 2211 (2002).
  • 61. Diemer R.B. and Olson J.H., A moment methodology for coagulation and breakage problems: Part 3 -generalized daughter distribution Junctions, Chem. Engng Sci., 57, 4187 (2002).
  • 62. Dobrzański L., Sierzputowski A., Mieszalnik o prostoliniowym ruchu mieszadła, Inż. Ap. Chem., 32, 12 (1993).
  • 63. Du Gon Lee, Bonner J.S., Garton L.S., Ernest A.N.S. and Autenrieth R.L., Modeling coagulation kinetics incorporating fractal theories: A fractal rectilinear approach, Wat. Res., 34, 1987 (2000).
  • 64. Ducoste J., A two-scale PBM for modeling turbulent flocculation in water treatment processes, Chem. Engng Sci., 57, 2157 (2002).
  • 65. Elsner J.W., Turbulencja przepływow, PWN, Warszawa 1987.
  • 66. Etchells III A.W., Slurry handling problems in the process industries, w Ayazi Shamlou P. (Ed.), Processing of Solid-Liquid Suspensions, Butterworth-Heineman, Oxford 1993.
  • 67. Fair G.M. and Gemmell R.S., A mathematical model o f coagulation, J. Colloid Sci., 19, 360-372 (1964).
  • 68. Falk L. and Schaer E., A PDF modelling o f precipitation reactors, Chem. EngngSci., 56, 2445 (2001).
  • 69. Fan A., Turro N.J. and Somasundaran P., A study o f dual polymer flocculation, Colloids Surfaces A: Physicochem. Eng. Aspects, 162, 141 (2000).
  • 70. Farrow J. and Warren L., Measurement o f Size o f Aggregates in Suspension, w Dobias B., Coagulation and Flocculation: Theory and Application, Surfactant Science Series, vol.47, Marcel Dekker, New York 1993.
  • 71. Feke D.L. and Schowalter W.R., The Effect o f Brownian Diffusion on Shear-Induced Coagulation of Colloidal Dispersions, / Fluid Mech., 133, 17 (1983).
  • 72. Fleer G.J. and Scheutjens J.M.H.M., Modeling Polymer Adsorption, Steric Stabilization, and Flocculation, w Dobias B., Coagulation and Flocculation: Theory and Application, Surfactant Science Series, vol.47, Marcel Dekker, New York 1993.
  • 73. Flesch J.C., Spicer P.T. and Pratsinis S.E., Laminar and Turbulent Shear-Induced Flocculation o f Fractal Aggregates, AICHE J., 45, 1114 (1999).
  • 74. Frenklach M., Method o f moments with interpolative closure, Chem. Engng Sci., 57, 22295 (2002).
  • 75. Friedlander S.K., Smoke, Dust and Haze, John Wiley and Sons, New York 1977.
  • 76. Gardner K.H., Theis T.L. and Young T.C., Colloid aggregation: numerical solution and measurements, Colloids Surfaces A: Physicochem. Eng. Aspects, 141, 237 (1998).
  • 77. Gardner K.H., Theis T.L., A Unified Kinetic Model for Particle Aggregation, J. Coll. Int. Sci., 180, 162 (1996).
  • 78. Gierczycki A.T., Wymiar fraktalny agregatow ciała stałego w cieczy, Chemik, 10,271 (1996).
  • 79. Gierczycki A.T., Power Curves for Vibrating Mixers, Chem. Biochem. Eng. Q., 12, 97 (1998).
  • 80. Gierczycki A., Badanie zjawiska zawieszenia cząstek ciała stałego w cieczy w mieszalnikach wibracyjnych, Inż. Chem. Proc., 20,23 (1999).
  • 81. Gierczycki A., Dzido G., Kocurek J., Badania mieszalnika wibracyjnego, Inż. Ap. Chem., 41, 47 (2002).
  • 82. Gierczycki A.T. and Shamlou A.P., Aggregation o f Monosized Particles in Turbulently Agitated Suspensions - a simplified Approach, Chem. Biochem. Eng. Q., 10, 125 (1996).
  • 83. Gierczycki A.T. and Ayazi Shamlou P., Critical Suspension Conditions in Vibrating Mixers, Chem. Biochem. Eng. Q., 11, 183 (1997).
  • 84. Gierczycki A., Thullie J., Zachowanie się zawiesin ciało stałe-ciecz w mieszalnikach wibracyjnych, Inż. Aparatura Chem., 40, 24 (2001).
  • 85. Giona M., van den Bleek C.M. and Krishna R. (editors), Chaos and Fractals in Chemical Engineering, Chem. Eng. J. (special issue), 64, 1 (1966).
  • 86. Glasgow L.A. and Luecke R.H., Mechanisms o f Deaggregation for Clay-Polymer Floes in Turbulent Systems, Ind. Eng. Chem. Fundam., 19, 148 (1980).
  • 87. Glatz C.E., Hoare M., Landa-Vertiz J., The Formation and Growth o f Protein Precipitates in a Continuous Stirred-Tank Reactor, AlChE J., 32, 1196 (1986).
  • 88. Glover S.M., Yao-de Yan, Jameson G.J. and Biggs S., Bridging flocculation studied by light scattering and settling, Chem. Eng. J. 80, 3 (2000).
  • 89. Godin F.B., Cooper D.G. and Rey A.D., Development and solution o f a cell mass population balance model to the SCF process, Chem. Engng Sci., 54, 565 (1999).
  • 90. Gonzalez E.A. and Hill P.S., A method for estimating the flocculation time o f monodispersed sediment suspensions, Deep-Sea Research I. 45 1931 (1998).
  • 91. Gonzalez E.A. and Hill P.S., An investigation o f Bremer et al.’s aggregation time, Colloids Surfaces A: Physicochem. Eng. Aspects, 155, 113 (1999).
  • 92. Goossens J.W.S and Luner P., Flocculation o f microcrystalline cellulose suspensions with cationic polymers: effect o f agitation, Technical Association o f pulp and p a p e r industries, 59, 89 (1976).
  • 93. Gregory J., Fundamentals o f flocculation, Critical Reviews in Environmental Control, 19, 185 (1989).
  • 94. Gregory J., Stability and flocculation o f suspensions, w Ayazi Shamlou P. (Ed.), Processing o f Solid-Liquid Suspensions, Butterworth-Heineman, Oxford 1993.
  • 95. Gregory J., Effect o f dosing and mixing conditions on flocculation by polymers, w Williams R.A. and de Jaeger N.C. (Eds.), Advances in Measurement and Control o f Colloidal Processes, Butterworth-Heinemann, Oxford 1991.
  • 96. Gregory J., Konsultacje, Dept, o f Civil Engineering, UCL, London 1994.
  • 97. Gregory J., The Role Floe Density in Solid-Liquid Separation, Filtration and Separation, p.367, May 1998.
  • 98. Gregory J. and Chung H., On line measurement o f floe properties by an improved turbidity technique, UCL report, London 1993.
  • 99. Gryboś R., Podstwy mechaniki płynow, t.I i II, PWN, Warszawa 1998.
  • 100.Gutsch A., Pratsinis S.E. and Loffler F., Agglomerate structure and growth rate by trajectory calculations o f monomer-cluster collisions, J. Aerosol Sci., 26, 187 (1995).
  • 101.Hafez M.M. and Prochazka J., The dynamic effects in vibrating-plate and pulsed extractors - 1. Theory and experimental technique, Chem. Engng Sci., 29, 1745 (1974).
  • 102.Hamby N., Edwards M.F. and Nienow A.W. (Eds.), Mixing in the Process Industries, Butterworth-Heinemann, Oxford 1992.
  • 103.Hartel R.W. and Randolph A.D., Mechanisms and Kinetic Modeling o f Calcium Oxalate Crystal Aggregation in a Urinelike Liquor. Part II, AlChEJ., 32, 1186 (1986).
  • 104.Hidy G.M. and Brock J.R. (Eds.), Topics in Current Aerosol Research. Part 2, Pergamon Press, Oxford 1972.
  • 105.Higashitani K , Ogawa R., Hosokawa G. and Matsuno Y., Kinetic theory o f shear coagulation for particles in a viscous fluid, J. Chem. Eng. Japan, 15, 299 (1982).
  • 106.Higashitani K., Yamauchi K , Matsuno Y. and Hosokawa G., Turbulent coagulation o f particles dispersed in a viscous fluid, J. Chem. Eng. Japan, 16, 299 (1983).
  • 107.Hill P. and Ka M. Ng, Particle size distribution by design, Chem. Engng Sci., 57 ,2 1 2 5 (2002).
  • 108.Hinze J.O., Turbulence, McGraw-Hill, New York 1959.
  • 109.Hogg R., Flocculation and dewatering, Int. J. Miner. Process., 58, 223 (2000).
  • 110.Hollander E.D., Derksen J.J., Kramer H.M.J., van Rosmalen G.M. and van den Akker H.E.A., A numerical study on orthokinetic agglomeration in stirred tanks, Powder Techn., 130,169 (2003).
  • 111.Hollander E.D., Derksen J.J., Bruinsama O.S.L., van den Akker H.E.A., van Rosmalen G.M., A numerical study on the coupling o f hydrodynamics and orthokinetic agglomeration, Chem. Engng Sci., 56, 2531 (2001).
  • 112.Hounslow M.J., Solving the Population Balance for Agglomerating Systems, 5th International Symposium on Agglomeration, conference materials, 585, Brighton, UK 1989.
  • 113.Hounslow M.J., Pearson J.M.K., Instone T., Tracer Studies o f High-Shear Granulation: II. Population Balance Modeling, AICHE J., 47, 1984 (2001).
  • 114. Hounslow M.J., Ryall R.L., Marshall V.R., A Discretized population Balance for Nucleation, Growth, and Aggregation, AICHE J., 34, 1821 (1988).
  • 115.Hsu J.P., Glasgow L.A., Floe size reduction in the turbulent environment, Part. Sci. Technol., 1, 205 (1983).
  • 116.Hughes M.A., Coagulation and Flocculation, w Svarovsky L., Solid-Liquid Separation, Butterworth, London 1990.
  • 117.Hulburt H.M. and Katz S., Some problems in particle technology. A statistical mechanical formulation, Chem. Engng Sci., 19, 555 (1964).
  • 118.Hulburt H.M. and Akiyama T., Liouville equations for agglomeration and dispersion processes, Ind. Eng. Chem. Fund., 8, 319 (1969).
  • 119.Hunter R.J., Introduction to Modern Colloid Science, chapter 10: Applications o f colloid and Surface science, Oxford University Press, Oxford 1993.
  • 120. Ives K.J., Experiments in Orthokinetic Flocculation, w Gregory J. (Ed.), Solid-Liquid Separation, Ellis Horwood Ltd., Chichester 1984.
  • 12l.Ive s K.J., Coagulation and Flocculation. Part II - Orthokinetic Flocculation, w Svarovsky L. (Ed.), Solid-Liquid Separation, Butterworths, London 1990.
  • 122.1ves K.J. and al Dibouni M., Orthokinetic flocculation o f latex microspheres, Chem. Engng Sci., 34, 983 (1979).
  • 123.Jones A.G., Agglomeration during crystallization and precipitation from solution, 5th International Symposium on Agglomeration, conference proceedings, 131, IChemE., Rugby UK 1989.
  • 124.Kay B.H., Trottier B.H.R.A., Clark G.G., Characterizing the Fractal Structure o f Fineparticle Profiles Using the Concepts o f Geometrical Probability, Part. Part. Syst. Charact., 9, 209 (1992).
  • 125. Kendall K. and Stainton C., Adhesion and aggregation o f fine particles, Powder Techn., 121, 223 (2001).
  • 126.Kertesz J., Morphological transformations in pattern growth phenomena, w Stanley H. E. and Ostrowsky N., Random Fluctuations and Pattern Growth: Experiments and Models, NATO ASI Series, Series E, vol. 157, Kluwer Academic Publ., Dordrecht 1990.
  • 127.Kessler E.M. and Zanetić R., Suspension o f Solid Particles in an Agitated Vessel. II. Effects o f Geometry, Physical Characteristics, and Solid Concentrations, Chem. Biochem. Eng Q„ 8 ,157 (1994).
  • 128.Kim Y.H. and Glasgow L.A., Simulation o f Aggregate Growth and Breakage in Stirred Tanks, Ind. Eng. Chem. Res., 26, 1604 (1987).
  • 129.Klamka J., Pawelczyk M., Wyrwał J., Numerical Methods, Wyd. Politechniki Śl., Gliwice 2001.
  • 130.Koch R., Noworyta A., Procesy mechaniczne w inżynierii chemicznej, WNT, Warszawa 1995.
  • 131.Koh P.T.L., Andrews J.R.G. and Uhlherr PH.T., Flocculation in stirred tanks, Chem. Engng Sci., 39, 975 (1984).
  • 132. Kołmogorow A.N., Lokalnaja struktura turbulentnosti v nesźimaemoj źidkosti pri oćen’ bol’sich ćislach Reynoldsa, Doki. Akad. Nauk SSSR, 30, 299 (1941).
  • 133.Kostoglou M„ Dovas S. and Karabelas A.J., On the steady-state size distribution o f dispersions in breakage processes, Chem. Engng Sci., 52, 1285 (1997).
  • 134.Kostoglou M., Konstandopoulos A.G., Evolution o f aggregate size and fractal dimension during Brownian coagulation, J. Aerosol Science, 32, 1399 (2001).
  • 135.Krabben P., Nielsen J. And Michelsen M.L., Analysis o f single hyphal growth and fragmentation in submerged cultures using a population model, Chem. Engng Sci., 52, 2641 (1997).
  • 136.Kruis F.E., Maisels A. and Fissan H., Direct Simulation Monte Carlo Method for Particle Coagulation and Aggregation, AIChE J., 46, 1735 (2000).
  • 13 7. Kumar S. and Ramkrishna D., On the solution o f population balance equations by discretization - I. A fixed pivot technique, Chem. Engng Sci., 51, 1311 (1996).
  • 138.Kumar S. and Ramkrishna D„ On the solution o f population balance equations by discretization – II A moving pivot technique, Chem. Engng Sci., 51, 1333 (1996).
  • 139.Kumar S. and Ramkrishna D., On the solution o f population balance equations by discretization - III. Nucleation, growth and aggregation o f particles, Chem. Engng Sci., 52,4659 (1997).
  • 140.Kusters K.A., Wijers J.G and Thoenes D., Aggregation kinetics o f small particles in agitated vessels, Chem. Engng Sci., 52, 107(1997).
  • 141.Lage P.L.C., Comments on the “An analytical solution to the population balance equation with coalescence and breakage - A special case with constant number o f particles” by Patii D.P. and Andrews J.R.G, [Chem. Engng. Sci., 53(3) 599-601,1998]., Chem. Engng. Sci., 57,4253 (2002).
  • 142.Laskowski J., Chemia fizyczna w procesach mechanicznej przerobki kopalin, rozdział 5, Układy dyspersyjne, Wyd. Śląsk, Katowice 1969.
  • 143.Laufhiitte H.D. and Mersmann A., Local Energy Dissipation in Agitated Turbulent Fields and its Significance for the Design o f Stirring Equipment, Chem. Eng. Technol., 10, 56 (1987).
  • 144.Lee C.W. and Brodkey R.S., A Visual Study o f Pulp Floe Dispersion Mechanisms, AIChE J., 33, 297 (1987).
  • 145.Levieh V., Physico-Chemical Hydrodynamics, chapter V: Certain Problems in the Theory o f Coagulation of Dispersions Involving Liquids and Gases, Prentice-Hall, Englewood Cliffs 1962.
  • 146.Liberman A., Fine particle characterization methods in liquid suspensions, w Beddow J.K. (Ed.), Particle Characterization in Technology, vol. I, II, CRS Press, Inc., Boca Raton 1985.
  • 147.Liu Y. And Cameron I.T., A new wavelet-based method for the solution o f the population balance equation, Chem. Engn Sci., 56, 5283 (2001).
  • 148.Lo Mei Y.A., Gierczycki A.T., Titchener-Hooker N.J. and Ayazi Shamlou P., Newtonian Power Curve and Drop Size Distributions for Vibromixers, Can. J. Chem. Eng., 76, 441 (1998).
  • 149.Lu C.F. and Spielman L.A., Kinetics o f Floe Breakage and Aggregation in Agitated Liquid Suspensions, J. Coll. Interface Sci., 103, 95 (1985).
  • 150.Lu S., Ding Y., Guo J., Kinetics o f fine particle aggregation in turbulence, Adv. Colloid Interface Sci., 78, 197(1998).
  • 151.Mahoney A.W. and Ramkrishna D., Efficient solution o f population balance equations with discontinuities by finite elements, Chem. Engn Sci., 57, 1107 (2002).
  • 152.Mandelbrot B., Fractals: Form, Chance and Dimension, Freeman & Co., San Francisco 1977.
  • 153. Mandelbrot B., The Fractal Geometry o f Nature, Freeman & Co., San Francisco 1982.
  • 154.Marchal P., David R., Klein J.P. and Villermaux J., Crystallization and precipitation engineering - I. An efficient method for solving population balance in crystallization with agglomeration, Chem. Engng Sci., 4 3 ,5 9 (1 9 8 8 ).
  • 155.Marchisio D.L., Vigil R.D. and Fox R.O., Quadrature method o f moments for aggregation-breakage processes, J. Coll. Interface Sci., 258, 322 (2003).
  • 156.Marchisio D.L., Vigil R.D. and Fox R.O., Implementation o f the q.m.o.m. in CFD codes for aggregationbreakage problems, Chem. Engng S c i ., 58, 3337 (2003).
  • 157.Masiuk S., Nieustalony i ustalony ruch ciepła w przepływowym mieszalniku cieczy z mieszadłem wibracyjnym, Prace Naukowe Politechniki Szczecińskiej, 355, 9 (1987).
  • 158.Masiuk S., Mudrak R., Damra T., Saadeh J., Mieszalniki wibracyjne, Inż. Ap. Chem., 3 5 ,2 1 (1996).
  • 159.Matsushita M., Sumida K. and Sawada Y., Fractal Structure and Dymamics for Kinetic Cluster Aggregation of Polystyrene Colloids, J. Phys. Soc. Japan., 54, 2786 (1985).
  • 160. McCoy B.J., A population balance framework for nucleation, growth, and aggregation, Chem. Engng Sci., 5 7 ,2 2 7 9 (2002).
  • 161.Melis S., Verduyn M., Storti G., Morbidelli M., and Bałdyga J., Effect o f Fluid Motion on the Aggregation of Small Particles Subject to Interaction Forces, AIChE J., 45, 1383 (1999).
  • 162.Michoel A., Comparative Particle Size Measurements Using the Electrical Sensing Zone and Laser Diffraction Methods: A Collaborative Study, w Williams R. A. and de Jaeger N. C. (Eds.), Advances in Measurement and Control o f Colloidal Processes, Butterworth-Heinemann, Oxford 1991.
  • 163.Miyanami K , Tojo K , and Yano T., Liquid-phase mixing in a multistage vibrating-disc column with concurrent gas-liquid flow, J. Chem. Eng Japan, 6, 518 (1973).
  • 164.Muhle K., Floe stability in Laminar and Turbulent Flow, w Dobiaś B., Coagulation and Flocculation: Theory and Application, Surfactant Science Series, vol. 47, Marcel Dekker, New York 1993.
  • 165.Myerson A.S., Handbook o f Industrial Crystallization, Butterworth-Heinemann Series in Chemical Engineering, Stoneham 1993.
  • 166.Nelson C.D. and Glatz C.E., Primary Particle Formation in Protein Precipitation, Biotechnology and Bioengineering, 27, 1434 (1985).
  • 167.Nicmanis M. And Hounslow M.J., A finite element analysis o f the steady state population balance equation for particulate systems: aggregation and growth, Computers Chem. Eng., 20, S261 (1996).
  • 168.Nienow A.W. and Miles D„ A dynamometer for the accurate measurement o f mixing torque, Journal of Physics E, 2 ,9 9 4 (1 9 6 9 ).
  • 169.Obuchow M.A., O raspredelenii energii v spektrie turbulentnogo potoka, Izv. Akad. Nauk SSSR, Ser. Geog. Geof, no.4-5 (1941).
  • 170.0kamoto Y., Nishikawa M., Hashimoto K., Energy dissipation rate distribution in mixing vessels and its effects on liquid-liquid dispersion and solid-liquid mass transfer, Int. Chem. Eng., 21, 88 (1981).
  • 171.0kuyama K. Kousaka Y. and Yoshida T., Turbulent coagulation o f aerosols in a stirred tank, / Chem. Eng. Japan, 10, 142 (1977).
  • 172.01dshue I.Y., Fluid Mixing Technology, McGraw-Hill Publ. Co., New York 1983.
  • 173.Orlik M., Reakcje oscylacyjne, porządek i chaos, rozdz. 2, Fizyczne i fizykochemiczne przejawy niestabilności, WNT, Warszawa 1996.
  • 174.0uchiyama N. and Tanaka T„ Physical requisite to appropriate granule growth rate, Ind. Engng Chem. Process. Des. Dev., 21, 35 (1982).
  • 175.Pandya J.D. and Spielman L.A., Floe Breakage in Agitated Suspensions: Theory and data Processing Strategy, J. Coll. Interface Sci., 90, 517 (1982).
  • 176.Parker D.S., Warren A.M., Kaufman W.J. and Jenkins D„ Floe breakup in turbulent flocculation processes, J. San. EngDiv., February, 79 (1972).
  • 177.Patil D.P., Andrews J.R.G., An analytical solution to continuous population balance model describing floe coalescence and breakage - A special case, Chem. Engng. Sci., 53, 599 (1998).
  • 178.Patil D.P., Andrews J.R.G., Uhlherr P.H.T., A lumped discrete population balance model for shear flocculation - model development, Int. J. Miner. Process., 50, 289 (1997).
  • 179.Patil D.P., Andrews J.R.G., Uhlherr P.H.T., Shear flocculation - kinetics o f floe coalescence and breakage, Int. J. Miner. Process., 61, 171 (2001).
  • 180.Peitgen H.O., Jurgens H., Saupe D„ Chaos and Fractals: New Frontiers o f Science, Springer-Verlag, New York 1992.
  • 181.Petenate A.M., Glatz C.E., Isoelectric Precipitation o f Soy Protein: II. Kinetics o f Protein Aggregate Growth and Breakage, Biotechnology and Bioengineering, 25, 3059 (1983).
  • 182.Pijanowski E., Dłużewski M., Dłużewska A., Jarczyk A., Ogolna technologia żywności, WNT, Warszawa 1996.
  • 183.Pohorecki R., Bałdyga J., The effects o f micromixing and the manner o f reactor feeding on precipitation in stirred tank reactors, Chem. Engng Sci., 43, 1949 (1988).
  • 184.Pohorecki R., Batdyga J., Ryszczuk A and Motyl T., Influence o f turbulent shear stress on erythrocytes, Proceedings o f the First European Congress on Chemical Engineering, 2883-2886, Florence, Italy 1997.
  • 185.Rajarajan J., Removal o f humic substances from water by coagulation and dissolved air flotation, M.Sc. Dissertation, UCL, London 1993.
  • 186. Ramkrishna D., The status o f population balances, Rev. Chem. Eng., 3, 49 (1985).
  • 187.Ramkrishna D., Population Balances. Theory and Applications to Particulate Systems in Engineering, Academic Press, San Diego 2000.
  • 188.Ramkrishna D. And Mahoney A.W., Population balance modeling. Promise for future, Chem. Engng Sci., 57, 595 (2002).
  • 189.Randolph A.D., Larson M.A., Theory o f Particulate Processes, Academic Press, Inc., New York 1988.
  • 190.Robinson M., Flocculation. A Literature Survey o f Theory and Practice, Water and Water Engineering, March, 96 (1964).
  • 191.Rumpf H. The Strength o f Granulates and Agglomerates, w Knepper W.A. (ed.), Agglomeration, Wiley & Sons, New York 1962.
  • 192.Rumpf H. and Schubert H., The Behavior o f Agglomerates under Tensile Strain,/. Chem. Eng Japan, 7, 294 (1974).
  • 193.Saffman P.G., Turner J.S., On the collision drops in turbulent clouds,/ . Fluid Mech., 196, 599 (1956).
  • 194.Saffrnan P.G., Turner J.S., On the collision drops in turbulent clouds, Corrigendum, J. Fluid Mech., 1, 16 (1988).
  • 195.Sander L.M., Theory o f fractal growth processes, w Family F. and Landau D.P., (Eds.), Kinetics of Aggregation and Gelation, Elsevier Science, Amsterdam 1984.
  • 196,Sastry K.V.S., Similarity size distribution o f agglomerates during their growth by coalescence in granulation or green pelletization, Int. J. Miner. Processing, 2, 187 (1975).
  • 197.Scarlett B., Particle Populations - to balance or not to balance, that is the question, Powder Techn., 125, 1 (2002).
  • 198.Schaefer D.W., Martin J.E., Wiltzius P.W. and Cannell D.S., Aggregation o f colloidal silica, w Family F. and Landau D.P., (Eds.), Kinetics o f Aggregation and Gelation, Elsevier Science, Amsterdam 1984.
  • 199. Schmidt P.W., Use o f Scattering to Determine the Fractal Dimension, w Avnir D. (Ed.), The Fractal Approach to Heterogeneous Chemistry, Wiley and Sons, New York 1989.
  • 200.Schumann T.E., Theoretical aspects o f the size distribution o f fog particles, J. Roy. Meteor. Soc., 66, 195 (1940).
  • 201.Schuetz S. and Piesche M., A mathematical model o f coagulation processes, Separation/Purification Technology, 26, 61 (2002).
  • 202.Selomulya C., Bushell G., Amal R., Waite T.D., Understanding the role o f restructuring in flocculation: The application o f a population balance model, Chem. Engng Sci., 58, 327 (2003).
  • 203.Serra T. and Casamitjana X., Effect o f the Shear and Volume Fraction on the Aggregation and Breakup of Particles, AIChE J., 44, 1724 (1998).
  • 204.Sherwin M.B., Shinnar R. and Katz S., Dynamic Behavior o f the Well-Mixed Isothermal Crystallizer, AIChE J., 13, 1141 (1967).
  • 205. Shinnar R., On the behaviour o f liquid dispersions in mixing vessels, J. Fluid Mech., 1 0 ,2 5 9 (1961).
  • 206.Sierzputowski A., Dobrzański L., Pomiar mocy mieszania dla mieszadła wibracyjnego, mteriały IX Ogolnokrajowej Konferencji Naukowej Inżynierii Chemicznej i Procesowej, cz. III, Procesy mechaniczne w inżynierii chemicznej, Warszawa 1977.
  • 207.Simons S.J.R., Modelling o f aggregating systems: from spheres to fractals, Powder Technol., 87, 29 (1996).
  • 208.Smit D.J., Hounslow M.J. and Paterson W.R., Aggregation and gelation - 1. Analytical solutions for CST and batch operation, Chem. Engng Sci., 49, 1025 (1994).
  • 209.Smoluchowski M., Versuch einer mathematishen Theorie der Koagulationskinetik kolloider Losungen, Zeitschr. Phys. Chem., 92, 129 (1917).
  • 210.Song M., Steiff A. And Weinspach P.M., A very effective method to solve the population balance equation with particle-size growth, Chem. Engng Sci., 52, 3493 (1997).
  • 21 l.Sonntag H., Koloidy, PWN, Warszawa 1982.
  • 212.Sonntag H., Cagulation Kinetics, w Dobias B., Coagulation and Flocculation: Theory and Application, Surfactant Science Series, vol.47, Marcel Dekker, New York 1993.
  • 213.Sonntag R.C. and Russel W. B., Structure and Breakup o f Floes Subjected to Fluid Stresses. II. Theory, J. Coll. Interface Sci., 115, 378 (1987).
  • 214. Spicer P.T. and Pratsinis S.E., Coagulation and Fragmentation: Universal Steady-State Particle-Size Distribution, AICHE J., 42, 1612 (1996).
  • 215. Stauffer C. E., Emulgatory, WNT, Warszawa 1999.
  • 216.Stavrinides S., Ayazi Shamlou P. and Hoare M., Effects o f engineering parameters on the precipitation, recovery and purification o f proteins, w Ayazi Shamlou P. (Ed.), Processing o f Solid-Liquid Suspensions, Butterworth-Heineman, Oxford 1993.
  • 217.Stockmayer W.H., Theory o f molecular size distribution and gel formation in polymerization, J. Chem. Phys., 11,4 5 (1 9 4 3 ).
  • 218.Stręk F., Mieszanie i mieszalniki, WNT, Warszawa 1971.
  • 219.Stroh G., The Effect o f Coagulation and Flocculation on the Filtration Properties o f Suspensions Incorporating a High Content o f Fines, w Dobias B., Coagulation and Flocculation: Theory and Application, Surfactant Science Series, vol.47, Marcel Dekker, New York 1993.
  • 220. Sutherland D.N., A Theoretical Model o f Floe Structure,/. Coll. Interface Sci., 25, 373 (1967).
  • 221. Svarovsky L., Characterization o f Particles Suspended in Liquids, w Svarovsky L., Solid-Liquid Separation, Butterworth, London 1990.
  • 222.Synowiec P., Jones A.G. and Ayazi Shamlou P., Crystal break-up in turbulently agitated suspensions, Chem. Engng Sci., 48, 3485 (1993).
  • 223.Talaga J., Badania parametrow turbulencji cieczy w mieszalniku, Inż. Chem. Proc., 22, 3E, 1387 (2001).
  • 224.Tambo N. and Hozumi H., Physical characteristics o f floes II. Strength o f floes, Water Res., 13, 421 (1979).
  • 225.Tambo N. and Watanabe Y., Physical characteristics o f floes I. Floe density function o f aluminium floe, Water Res., 13, 409(1979).
  • 226. Thomas C.R., Shear effects on cells in bioreactors, w Ayazi Shamlou P. (Ed.), Processing o f Solid-Liquid Suspensions, Butterworth-Heineman, Oxford 1993.
  • 227.Thomas D.G., Turbulent Disruption o f Floes in Small Particle Size Suspensions, AIChE J., 10, 517 (1964).
  • 228.Thomas D.N., Judd S.N. and Fawcett N., Flocculation modelling: a review, Water Res., 33, 1579 (1999).
  • 229.Tojo K , Miyanami K., and Yano T., Liquid-liquid extraction in a multistage vibrating-disc column with concurrent gas-liquid flow ,/. Chem. Eng Japan, 8, 122 (1975).
  • 230.Tojo K., Miyanami K., Minami I. and Yano T., Power Dissipation in a Vibrating-Disc Column, Chem. Eng J., 17,211 (1979).
  • 231.Tomi D.T. and Bagster D.F., The Behaviour o f Aggregates in Stirred Vessels. Part I – Theoretical Considerations on the Effects o f Agitation, Trans IChemE, 56, 1 (1978).
  • 232.Tomi D.T. and Bagster D.F., The Behaviour o f Aggregates in Stirred Vessels. Part II - An Experimental Study o f the Flocculation o f Galena in a Stirred Tank, Trans IChemE, 56, 9 (1978).
  • 233. van de Ven T.G.M. and Mason S.G., The microrheology o f colloidal dispersions. VII. Orthokinetic doublet formation o f spheres, Colloid and Polymer Sci., 255, 468 (1977).
  • 234.Verkoeijen D., Pouw G.A., Meesters G.M.H. and Scarlet B., Population balances for particulate processes - a volume approach, Chem. Engng Sci., 57, 2287 (2002).
  • 235.Vicsek T., Fractal Growth Phenomena, World Scientific, Singapore 1992.
  • 236. Void M.J., Computer simulation o f floe formation in a colloidal suspension. J. Coll. Interface Sci., 18, 684 (1963).
  • 237.Walas S.M., Modeling with Differential Equation in Chemical Engineering, Butterworth-Heinemann, Stoneham 1991.
  • 238.Wachi S. and Jones A.G., Dynamic modelling o f particle size distribution and degree o f agglomeration during precipitation, Chem. Engng Sci., 47, 3145 (1992).
  • 239.Weitz D.A. and Huang J.S., Se lf similar structures and the kinetics o f aggregation o f gold colloids, w Family F. and Landau D.P., (Eds.), Kinetics o f Aggregation and Gelation, Elsevier Science, Amsterdam 1984.
  • 240.Weitz D.A. and Oliveria M., Fractal Structures Formed by Kinetic Aggregation o f Aqueous Gold Colloids, Phys. Rev. Lett., 52, 1433 (1984).
  • 241.White A.J. and Hounslow M.J., Modelling droplet size distributions in polydispersed wetstream flows, Int. J. Heat Mass Transfer, 43, 1873 (2000).
  • 242.Williams R.A., Colloid and Surface Engineering, Butterworth-Heinemann, Oxford 1992.
  • 243.Wolska-Bochenek J., Borzymowska A., Chmaj J., Tryjarska M., Zarys teorii rownań całkowych i rownań rożniczkowych cząstkowych, PWN, Warszawa 1981.
  • 244. Wojcik J., Jones A.G., Particle disruption o f precipitated CaC03 crystal agglomerates in turbulently agitated suspensions, Chem. Engng Sci., 53, 1097 (1998).
  • 245. Wojcik J. Jones A.G., Dynamics and stability o f continuous MSMPR agglomerative precipitation: numerical analysis o f the dual particle coordinate model, Computers Chem. Engng, 2 2 ,535 (1998).
  • 2 46.Wright H. and Ramkrishna D., Solutions o f inverse problems in population balances - I. Aggregation kinetics, Computers Chem. Eng., 16, 1019 (1992)
  • 247. Yan Z. and Deng Y., Cationic microparticle based flocculation and retention systems, Chem. EngJ., 80, 31 (2000).
  • 248.Yao-de Yan, Bums J.L., Jameson G.J. and Biggs S., The structure and strength o f depletion force induced particle aggregates, Chem. Eng. J., 80, 23 (2000).
  • 249.Yuu S., Fukui Y. and Miyatani T., Turbulent disruption and agglomeration o f fly ash particles in a stirred tank, Chem. Engng Sci., 40, 1759 (1985).
  • 250.ZETAG and MAGNAFLOG, High efficiency polyelectrolytes for municipal sewage and industrial wastewater treatment, materiały reklamowe firmy Allied Colloids Ltd., Wlk. Brytania 1993.
  • 251.ZETAG 63, Cationic Polyelectrolyte, Technical and Processing Data, Allied Colloids Ltd., Wlk. Brytania 1994.
  • 252.Zielewicz-Madej E., Badania nad zależnością między zmianami charakterystyki kondycjonowanych osadow ściekowych a efektami ich odwadniania, praca dokt., Politechnika SI., Gliwice 1984.
  • 253.Zwietering N ., Suspending o f solid particles in liquid by agitators, Chem. Engng Sci., 8, 244 (1958).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL9-0007-0087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.