PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes of microstructure in CuNi25 alloy deformed at elevated temperature

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper was to present behaviour of CuNi25 alloy during elevated temperature tensile tests and describe changes of microstructure of material after deformation at the range of the Ductility Reduced Area (DRA) in which the phenomenon of Ductility Minimum Temperature (DMT) is situated. Design/methodology/approach: Numerous techniques were used to characterize properties of material: high temperature tensile tests, transmission electron microscopy (TEM), HRTEM, FFT. Findings: During the experimental studies the course of elongation and reduction of area curves has been determined. Morphology of material after deformation at elevated temperature was analysed. Research limitations/implications: Further studies should be undertaken in order to correlate effects, processes and mechanism existing and superimpose in material in range of Ductility Minimum Temperature phenomenon, it should help us understand high temperature properties of mentioned material. Practical implications: Knowledge about material properties during high temperature deformation leads to selection of the appropriate production parameters. Misapplication of parameters leads to multiplication of costs and often destruction of material during production or operating. Correct selection of technical and economical parameters of material production processes gives us supremacy in economic and technological competition. Originality/value: Investigations of this CuNi25 alloy complete knowledge about mechanical properties and help us develop correct parameters for more effective technologies for material production.
Rocznik
Strony
98--109
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
autor
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, piotr.sakiewicz@polsl.pl
Bibliografia
  • [1] R. Nowosielski, Ductility minimum temperature in selected mono-phase, binary brasses, Journal of Materials Processing Technology 109 (2001) 142-153.
  • [2] M. Vedani, D. Ripamonti, A. Mannucci, D. Dellasega, Hot Ductility of Microalloyed Steels, La Metallurgia Italiana (2008) 19-24.
  • [3] J. Kömi, Hot ductility of austenitic and duplex stainless steels under hot rolling conditions, Department of Mechanical Engineering University of Oulu, Oulu, 2001.
  • [4] A. Lis, J. Lis, C. Kolan, M. Knapiński, Effect of strain rate on hot ductility of C-Mn-B steel, Journal of Achievements in Materials and Manufacturing Engineering 41 (2010) 26-33.
  • [5] S.A. Gavin, J. Billingham, J.P. Chubb, P. Hancock, Effect of trace impurities on hot ductility of as-cast cupronickel alloys, Metals Technology 5/11 (1978) 397-401.
  • [6] W. Ozgowicz, The relationship between hot ductility and intergranular fracture in a CuSn6P alloy at elevated tempera-tures, Journal of Materials Processing Technology 162-163 (2005) 392-401.
  • [7] R. Nowosielski, P. Sakiewicz, J. Mazurkiewicz, Ductility Minimum Temperature phenomenon in as cast CuNi25 alloy, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 193-196.
  • [8] R. Nowosielski, P. Sakiewicz, P. Gramatyka, The effect of ductility minimum temperature in CuNi25 alloy, Journal of Materials Processing Technology 162-163 (2005) 379-384.
  • [9] J. Dobrzański, A. Zieliński, M. Sroka, Microstructure, properties investigations and methodology of the state evaluation of T23 (2.25Cr-0.3Mo-1.6W-V-Nb) steel in boilers application, Journal of Achievements in Materials and Manufacturing Engineering 32/2 (2009) 142-153.
  • [10] R.A. Varin, K.J. Kurzydłowski, K. Tangri, The effects of nitrogen content and twin boundaries on the yield strength of various commercial heats of type 316 austenitic stainless steel, Materials Science and Engineering 101 (1988) 221-226.
  • [11] M.W. Grabski, Mechanical properties of Internal Interfacest, Journal de Physique I 46 (1985) 567.
  • [12] K. Konopka, J.W. Wyrzykowski, The effect of the twin boundaries on the yield stress of a material, Journal of Materials Processing Technology 64/1-3 (1997) 223-230.
  • [13] C. Devadas, I.V. Samarasekera, E B. Hawbolt, The thermal and metallurgical state of steel strip during hot rolling, Microstructural Evolution 22 (1991) 335-349.
  • [14] T. Watanabe, S. Tsurekawa, Toughening of brittle materials by grain boundary engineering, Materials Science and Engineering A 387-389 (2004) 447-455.
  • [15] A. Zeren, M. Zeren, Stress relaxation properties of prestressed steel wires, Journal of Materials Processing Technology 141 (2003) 86-92.
  • [16] L. Xaio, J.L. Bai, Stress relaxation properties and microscopic deformation structure of H68 and QSn6.5-0.1 copper alloys at 353 K, Materials Science and Engineering A 244 (1998) 250-256.
  • [17] P. Virtanen, T. Tiainen, Stress relaxation behavior in bending of high strength copper alloys in the Cu-Ni-Sn system, Materials Science and Engineering A 238/2 (1997) 407-410.
  • [18] W. Bruckner, S. Baunack, Stress and oxidation in CuNi thin films, Thin Solid Films 355-356 (1999) 316-321.
  • [19] W. Bruckner, V. Weihnacht, Stress relaxation in CuNi thin films, Journal of Applied Physics 85 (1999) 3602-3608.
  • [20] W. Ozgowicz, Physico-chemical, structural and mechanical factors of intergranular brittleness of alpha-bronzes at elevated temperature, Silesian University of Technology Publishing House, Gliwice, 2004 (in Polish).
  • [21] B. Druyanov, I. Roman, A continuum model for grain junctions in polycrystalline aggregate, Mechanism of Materials 30 (1998) 31-40.
  • [22] G. Palumbo, D.M. Doyle, A.M. El-Sherik, U. Erb, K.T. Aust, Intercrystalline hydrogen transport in nanocrystalline nickel, Scripta Metallurgica et Materialia 25/3 (1991) 679-684.
  • [23] W. Ozgowicz, B. Grzegorczyk, The influence of the tem-perature of plastic deformation on the structure and mechanical properties of copper alloys CuCo2Be and CuCo1Ni1Be, Archives of Materials Science and Engineering 39/1 (2009) 5-12.
  • [24] R. Nowosielski, Explication of minimum plasticity effect of mono-phase Brassens, Silesian University of Technology Publishing House, Gliwice, 2000 (in Polish).
  • [25] V. Laporte, A. Mortensen, Intermediate temperature embrittlement of copper alloys, International Materials Reviews 54/2 (2009) 94-116.
  • [26] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The influence of the temperature of tensile test on the structure and plastic properties of copper alloy type CuCr1Zr, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 123-136.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0045-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.