PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing technologies of sintered graded tool materials evaluated according to foresight methodology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of this paper is to evaluate the development efficiency of conventional technologies of powder metallurgy used for graded tool materials manufacturing. The technologies were divided into three groups according to the matrix type and the percent fraction volume of components in the powders layers. Design/methodology/approach: In the framework of foresight-materials science research a foresight matrices set was created, materials science experiments using light, transmission and scanning electron microscopes, X-ray diffractometer, microhardness tester, work-stands for testing of fatigue resistance, mechanical fatigue strength, fracture toughness were conducted and technology roadmaps were prepared. Findings: Quite high potential and attractiveness of the analysed technologies against the environment, as well as good development perspectives in industry were shown. Research limitations/implications: Research concerning graded tool materials constitute a part of a larger research project aimed at identifying, researching, and characterising the priority innovative technologies in the field of materials surface engineering. Practical implications: The presented materials science results prove a manufacturing possibility of elements with ductile cores and hard coatings using conventional technologies of powder metallurgy. These technologies are recommended for practical implementation in industry, especially for cutting tools. Originality/value: The originality of this paper the value evaluation of manufacturing technologies of graded tool materials against background environment including the influence of the chemical composition and sintering conditions on the surface layers hardness.
Rocznik
Strony
69--97
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
Bibliografia
  • [1] http://ec.europa.eu/research/innovation-union/index_en.cfm-?pg=home.
  • [2] MatVis. C. Dreher, Manufacturing visions: A holistic view of the trends for European manufacturing, in: M. Montorio, M. Taisch, K.-D. Thoben (eds.), Advanced Manufacturing. An ICT and Systems Perspective, Taylor & Francis Group, London, 2007.
  • [3] H. Dosch, M.H. Van de Voorde (eds.), Gennesys. White Paper. A New European Partnership between Nanomaterials Science & Nanotechnology and Synchrotron Radiation and Neuron Facilities, Max-Planck-Insititut für Metalforschung, Stuttgart, 2009.
  • [4] NANOMAT, www.nanomat.eitplus.pl (in Polish).
  • [5] FOREMAT, Technology Development Scenarios of Modern Metallic, Ceramic and Composites Materials. Reports of Project Co-Operators, B. Gambin, W. Łojkowski, A. Świderska-Środa (eds.), Unipress Publisher, Radom, 2010 (in Polish).
  • [6] FORSURF, www.forsurf.pl (in Polish).
  • [7] A.D. Dobrzańska-Danikiewicz, Computer Aided Foresight Integrated Research Methodology in Surface Engineering Area, work in progress.
  • [8] L.A. Dobrzański, M. Bonek, A. Klimpel, A. Lisiecki, Surface- Layer’s Structure of X40CrMoV5-1 Steel Remelted and/or WC Alloyed with HPDL Laser, Materials Science Forum 437-438 (2003) 69-72.
  • [9] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, A. Lisiecki, Comparison of the structures of the hot-work tool steels laser modified surface layers, Journal of Materials Processing Technology 164-165 (2005) 1014-1024.
  • [10] X.L. Wu, In situ formation by laser cladding of a TiC composite coating with a gradient distribution, Surface and Coatings Technology 115 (1999) 111-115.
  • [11] L.A. Dobrzański, K. Labisz, M. Piec, J. Lelątko, A. Klimpel, Structure and Properties of the 32CrMoV12-28 Steel Alloyed with WC Powder using HPDL Laser, Materials Science Forum 530-531 (2006) 334-339.
  • [12] L.A. Dobrzański, M. Polok, M. Adamiak, Structure and properties of wear resistance PVD coatings deposited onto X37CrMoV5-1 type hot work steel, Journal of Materials Processing Technology 164-165 (2005) 843-849.
  • [13] K. Lukaszkowicz, L.A. Dobrzański, Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5-1 steel substrate, Journal of Materials Science 43/10 (2008) 3400-3407.
  • [14] M. Soković, J. Kopać, L.A. Dobrzański, M. Adamiak, Wear of PVD-coated solid carbide end mills in dry high-speed cutting, Journal of Materials Processing Technology 157- 158 (2004) 422-426.
  • [15] C. Li, S.Q. Wang, D. Yong, J. Li, Microstructure and mechanical properties of gradient Ti(C,N) and TiN/Ti(C, N) multilayer PVD coatings, Materials Science and Engineering A 478 (2008) 336-339.
  • [16] L.A. Dobrzański, K. Gołombek, J. Kopać, M. Soković, Structure and Properties of TiN/TiAlSiN/TiN PVD Coatings on Cemented Carbides and Cermets, Materials Science Forum 437-438 (2003) 41-44.
  • [17] V.V. Uglov, V.M. Anishchik, S.V. Zlotski, G. Abadias, S.N. Dub, Stress and mechanical properties of Ti-Cr-N gradient coatings deposited by vacuum arc, Surface and Coatings Technology 200 (2005) 178-181.
  • [18] L.A. Dobrzański, D. Pakuła, E. Hajduczek, Structure and properties of the multi-component TiAlSiN coatings obtained in the PVD process in the nitride tool ceramics, Journal of Materials Processing Technology 157-158 (2004) 331-340.
  • [19] J. Smolik, M. Gulde, J. Walkowicz, J. Suchanek, Influence of the structure of the composite: nitrided layer/PVD coating' on the durability of forging dies made of steel DIN-1.2367, Surface and Coatings Technology 180-181 (2004) 506-511.
  • [20] M. Polok-Rubiniec, L.A. Dobrzański, M, Adamiak, Comparison of the PVD coatings deposited onto plasma nitrided steel, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 172-179.
  • [21] K. Dybowski, Ł. Kaczmarek, R. Pietrasik, J. Smolik, Ł. Kołodziejczyk, D. Batory, M. Gzik, M. Stegliński, Influence of chemical heat treatment on the mechanical properties of paper knife-edge die, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 422-427.
  • [22] B. Podgornik, S. Hogmark, O. Sandberg, V. Leskovsek, Wear resistance and anti-sticking properties of duplex treated forming tool steel, Wear 254/11 (2003) 1113-1121.
  • [23] C. Wei, X. Song, S. Zhao, L. Zhang, W. Liu, In-situ synthesis of WC-Co composite powder and densification by sinter-HIP, International Journal of Refractory Metals and Hard Materials 28/5 (2010) 567-571.
  • [24] A. Várez, B. Levenfeld, J.M. Torralba, G. Matula, L.A. Dobrzański, Sintering in different atmospheres of T15 and M2 high speed steels produced by modified metal injection moulding process, Materials Science and Engineering A 366/2 (2004) 318-324.
  • [25] L.A. Dobrzański, G. Matula, G. Herranz, A. Várez, B. Levenfeld, J.M. Torralba, Metal injection moulding of HS12-1-5-5 high-speed steel using a PW-HDPE based binder, Journal of Materials Processing Technology 175/1-3 (2006) 173-178.
  • [26] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Structure and properties of the gradient tool materials of unalloyed steel matrix reinforced with HS6-5-2 high-speed steel, Archives of Materials Science and Engineering 28 (2007) 197-202.
  • [27] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology 175/1-3 (2006) 186-191.
  • [28] M. Adamiak, J.B. Fogagnolo, E.M. Ruiz-Navas, L.A. Dobrzański, J.M. Torralba, Mechanically milled AA6061/ (Ti3Al)P MMC reinforced with intermetallics - The structure and properties, Journal of Materials Processing Technology 155-156/1-3 (2004) 155-156 2002-2006.
  • [29] A.V. Laptev, Theory and technology of sintering, thermal and chemicothermal treatment. Structure and properties of WC-Co alloys in solid - phase sintering. I. Geometrical evolution, Powder Metallurgy and Metal Ceramics 46 (2007) 415-422.
  • [30] L.A. Dobrzański, Fundamentals of materials science and physical metallurgy. Engineering materials with the fundamentals of materials design, WNT, Warsaw, 2002 (in Polish).
  • [31] W.M. Smith, Surface Materials Processing, Second Edition, Backmann Verlag, Berlin-London-Paris-Warsaw, 2001.
  • [32] I. Shiota, Y. Miyamoto (eds.), Functionally Graded Materials 1996, Elsevier Science B.V., Amsterdam, 1997.
  • [33] L.A. Dobrzański, Shaping the structure and properties of engineering and biomedical material surfaces, International OCSCO World Press, Gliwice, 2009 (in Polish).
  • [34] O. Eso, Z.Z. Fang, A. Griffo, Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC-Co, International Journal of Refractory Metals and Hard Materials 25 (2007) 286-292.
  • [35] W. Lengauer, K. Dreyer, Functionally graded hardmetals, Journal of Alloys and Compounds 338 (2002) 194-212.
  • [36] L.A. Dobrzański, A. Kloc, G. Matula, J.M. Contreras, J.M. Torralba, Effect of manufacturing methods on structure and properties of the gradient tool materials with the non-alloy matrix reinforced with the HS6-5-2 type high-speed steel, Proceedings of the 11th International Scientific Conference on the Contemporary Achievements in Mechanics, Manufacturing and Materials Science CAM3S’2005, Gliwice - Zakopane, 2005, 223-228.
  • [37] K. Bonny, P. De Baets, J. Quintelier, J. Vleugels, D. Jiang, O. an der Biest, B. Lauwers, W. Liu, Surface finishing: Impact on tribological characteristics of WC-Co hardmetals, International Journal of Reinfractory Metals and Hard Materials 43 (2010) 40-54.
  • [38] S.I. Cha, K.H. Lee, H.J. Ryu, S.H. Hong, Analytical modeling to calculate the hardness of ultra-fine WC-Co cemented carbides, Materials Science and Engineering A 489 (2008) 234-244.
  • [39] Z. Fang, G. Lockwood, A. Griffo, A dual composite of WC-Co, Metallurgical and Materials Transactions 30A (1999) 3231-3238.
  • [40] L.A. Dobrzański, B. Dołżańska, K. Gołombek, G. Matula, Characteristics of structure and properties of a sintered graded tool materials with cobalt matrix, Archives of Materials Science and Engineering 47/2 (2011) 69-76.
  • [41] A.D. Dobrzańska-Danikiewicz, Foresight methods for technology validation, roadmapping and development in the surface engineering area, Archives of Materials Science Engineering 44/2 (2010) 69-86.
  • [42] A. Dobrzańska-Danikiewicz, A. Drygała,Foresight methodology application for laser texturing of silicon surface, The Herald of National University in Khmelnickiy Technical Science, Ukraine, 2011, 156-157.
  • [43] A.D. Dobrzańska-Danikiewicz, E. Jonda, K. Labisz, Foresight methods application for evaluating laser treatment of hot-work steels, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 750-773.
  • [44] A. Dobrzańska-Danikiewicz,K.Lukaszkowicz, Technology strategic development directions of PVD coatings deposition onto the brass substrate, Material Science Engineering 4 (2011) 558-561 (in Polish).
  • [45] A.D. Dobrzańska-Danikiewicz, T. Tański, S. Malara, J. Domagała-Dubiel, Assessment of strategic development perspectives of laser treatment of casting magnesium alloys, Archives of Materials Science Engineering 45/1 (2010) 5-39.
  • [46] A.D. Dobrzańska-Danikiewicz, E. Hajduczek, M. Polok-Rubiniec, M. Przybył, K. Adamaszek, Evaluation of selected steel thermochemical treatment technology using foresight methods, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 115-146.
  • [47] A.D. Dobrzańska-Danikiewicz, K. Gołombek, D. Pakuła, J. Mikuła, M. Staszuk, L.W. Żukowska, Long-term development directions of PVD/CVD coatings deposited onto sintered tool materials, Archives of Materials Science Engineering 49/2 (2011) 69-96.
  • [48] L.A. Dobrzański, J. Trzaska, Application of neural networks to forecasting the CCT diagram, Journal of Materials Processing Technology 157-158 (2004) 107-113.
  • [49] L.A. Dobrzański, M. Kowalski, J. Madejski, Methodology of the mechanical properties prediction for the metallurgical products from the engineering steels using the Artificial Intelligence methods, Journal of Materials and Processing Technology 164 (2004) 1500-1509.
  • [50] L.A. Dobrzański, D. Pakuła, K. Gołombek, Structure and properties of gradient and multi (Ti,Al,Si)N + TiN nano-crystalline coatings deposited on cermet and ceramic tool materials, 9th International Research Expert Conference TMT 2005, Antalaya, Turkey, 2005, 37-40.
  • [51] L.A. Dobrzański, M. Staszuk, J. Konieczny, J. Lelątko, Structure of gradient coatings deposited by CAE-PVD techniques, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 55-58.
  • [52] L.A. Dobrzański, G. Matula, A. Varez, B. Levenfeld, J.M. Torralba, Structure and Properties of the Heat-Treated High-Speed Steel HS6-5-2 and HS12-1-5-5 Produced by Powder Injection Molding Process, Materials Science Forum 437-438 (2003) 133-136.
  • [53] L.A. Dobrzański, G. Matula, G. Herranz, A. Varez, B. Levenfeld, J.M. Torralba, Influence of debinding process on microstructure and properties of HS6-5-2- HSS parts produced by powder injection molding, 5th International Conference on Industrial Tools, ICIT’2005, Velenje, Cejle, Slovenia, 2005, 189-195.
  • [54] L.A. Dobrzański, B. Dołżańska, Structure and properties of sintered tool gradient materials, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 711-733.
  • [55] A. Dobrzańska-Danikiewicz, E-foresight of materials surface engineering, Archives of Materials Science Engineering 44/1 (2010) 43-50.
  • [56] A. Dobrzańska-Danikiewicz, Computer aided foresight methods applied into surface engineering area, Technical Journal 108/4-M (2011) 49-56 (in Polish).
  • [57] Z. Galas, I. Nykowski, Z. Żółkiewski, Multi-criteria programming, PWE, Warsaw, 1997 (in Polish).
  • [58] B. Dołżańska, Structure and properties of sintered graded tool materials based on the cobalt matrix, Unpublished PhD thesis, Silesian University of Technology Library, Gliwice, 2010 (in Polish).
  • [59] L.A. Dobrzański, A. Kloc, G. Matula, J. Domagała, J.M. Torralba, Effect of carbon concentration on structure and properties of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 45-48.
  • [60] L.A. Dobrzański, L. Wosińska, K. Gołombek, J. Mikuła, Structure of multicomponent and gradient PVD coatings deposited on sintered tool materials, Journal of Achie-vements in Materials and Manufacturing Engineering 20 (2007) 99-102.
  • [61] L.A. Dobrzański, L. Wosińska, J. Mikuła, K. Gołombek, T. Gawarecki, Investigation of hard gradient PVD (Ti,Al,Si)N coating, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 59-62.
  • [62] L.A. Dobrzański, A. Kloc-Ptaszna, A. Dybowska, G. Matula, E. Gordo, J.M. Torralba, Effect of WC concentration on structure and properties of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 91-94.
  • [63] A. Carpinteri, N. Puno, S. Puzzli, Strength vs. toughness optimization of microstructured composites, Chaos, Solitons and Fractals 39/3 (2009) 1210-1223.
  • [64] L.A. Dobrzański, Engineering materials and materials design. Fundamentals of materials science and physical metallurgy, WNT, Warsaw, edition II extended and supplemented, 2006 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0045-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.