PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of FTIR absorption spectroscopy to characterize waste and biofuels for pyrolysis and gasification

Identyfikatory
Warianty tytułu
PL
Zastosowanie spektroskopii absorpcyjnej FTIR do określania własności biopaliw i odpadów w procesach pirolizy i zgazowania
Języki publikacji
EN
Abstrakty
EN
The paper discusses the various applications of FTIR absorption spectroscopy as a tool for characterizing waste biofuels for pyrolysis and gasification. The FTIR spectrometer used in the study allows for analysis of solid and liquid waste and biofuel samples. Further, an attached dedicated gas cell is used in the characterization of gases evolving during pyrolysis in a versatile pyrolyser/gasifier attached to the FTIR. The pyrolyser operates in a batch mode and generates large quantities of product samples suitable for further chemical and physical analysis. The paper presents the preliminary results from investigation of the pyro-lysis gases from three different biofuels: pure cotton, wood and fuel made from a mixture of biomass and plastics (ROFIREŽ). First, certain characteristic classes of components are identified in the gas, and second, an attempt is made to explain the origin of the gas compo-nents based on the known chemical constituents of the waste/biofuel.
PL
W artykule omówiono możliwości zastosowania spektroskopii absorpcyjnej FTIR do określania własności odpadów i biopaliw w procesach pirolizy i zgazowania. W badaniach posłużono się spektrometrem FTIR pozwalającym na analizowanie zarówno stałych jak i płynnych próbek odpadów lub biopaliw. Ponadto urządzenie wyposażone jest w moduł z celą pomiarową do analizy próbek gazowych, które otrzymano z uniwersalnego reaktora pozwalającego na przeprowadzenie pirolizy lub zgazowania próbek biopaliw. Reaktor ten wyposażony jest w ruszt stały, a jego podstawową cechą jest możliwość generowania dużych ilości produktów pirolizy/zgazowania do dalszej analizy. W pracy przedstawiono pierwsze wyniki badań spektroskopowych FTIR próbek gazowych uzyskanych z pirolizy trzech biopaliw: bawełny (celulozy), peletów drewnianych i mieszanki biomasy z tworzywami sztucznymi (ROFIREŽ). Uzyskane spektra posłużyły początkowo do identyfikacji charakterystycznych dla danego paliwa grup składników, a następnie do próby powiązania zidentyfikowanych związków gazowych ze składnikami zawartymi w paliwach poddanych pirolizie.
Rocznik
Tom
Strony
51--62
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
autor
autor
autor
  • Joint Research Centre of the European Commission, Institute for Energy - Petten, the Netherlands,
Bibliografia
  • [1] Andersen L.K., Ogilby P.R. A nanosecond near-infrared step-scan Fourier transform absorption spectrometer: Monitorin singlet oxygen, organic molecule triplet states, and associated thermal effects upon pulsed-laser irradiation of a photosensitzer. Review of Scientific Instruments, 73 (12) 2002, 4313-4325.
  • [2] Andersen L.K., Frei H. Dynamics of CO in Mesoporous Silica Monitored by Time-Resolved Step-Scan and Rapid-Scan FT-IR Spectroscopy. J.Phys.Chem. B. 2006, 110, 22601-22607.
  • [3] Griffiths P.R., de Haseth J.A. Fourier Transform Infrared Spectrometry, Second Edition. John Wiley & Sons, Inc. 2007.
  • [4] Arrigone G M, Hilton M. Theory and practice in using Fourier transform infrared spectroscopy to detect hydrocarbons in emissions from gas turbine engines. Fuel 2005; 84; 1052-1058.
  • [5] Čermák J., Svoboda K., Pohořelý M. Application of FT-IR analyzers in measurement of flue gas and exhaust gas components. 27th Conference of Slovak Society of Chemical Engineering SSCHE 2000, Tatranske Matliare, 22-26 May, 2000.
  • [6] Özbay N., Uzun B.B, Varol E.A. and Pütün A.E. Comparative analysis of pyrolysis oils and its subfractions under different atmospheric conditions. Fuel Processing Technology 87 (11) 2006,1013-1019.
  • [7] Sharma R.K., Wooten J. B., Baliga V. L. and Hajaligol M. R. Characterization of chars from biomass-derived materials: pectin chars. Fuel 80 (12) 2001, 1825-1836.
  • [8] de Jong W., Pirone A., Wójtowicz M.A. Pyrolysis of Miscanthus Giganteus and wood pellets: TG-FTIR analysis and reaction kinetics. Fuel, 82, 2003, 1139-1147.
  • [9] Francioso O. et al. TG-DTA, DRIFT and NMR characterisation of humic-like fractions from olive wastes and amended soil. Journal of Hazardous Materials, In Press, Available online 9 April 2007.
  • [10] Joore L.P.A.A., Coremans M., de Putter S.J. Raw Material Control (RMC 600) at the gate at Smurfit Kappa Roermond Papier B.V. 4th CTP/PTS Packaging Paper&Board Recycling Symposium, Grenoble, 21-23 March 2006.
  • [11] Bassilakis R., Carangelo R. M. and Wójtowicz M. A. TG-FTIR analysis of biomass pyrolysis Fuel, 80 (12), 2001, 1765-1786.
  • [12] Li S., Lyons-Hart J., Banyasz J. and Shafer K. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel, 80 (12), 2001, 1809-1817.
  • [13] Baker R.R., Coburn S., Liu C. and Tetteh J. Pyrolysis of saccharide tobacco ingredients: a TGA-FTIR investigation. Journal of Analytical and Applied Pyrolysis, 74 (1-2), 2005, 171-180.
  • [14] Fang M.X., Shen D.K, Li Y.X., Yu C.J., Luo Z.Y. and Cen K.F. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 77 (1), 2006, 22-27.
  • [15] Keliang P., Wenguo X. and Changsui Z. Investigation on pyrolysis characteristic of natural coke using thermogravimetric and Fourier-transform infrared method. Journal of Analytical and Applied Pyrolysis, 80 (1), 2007, 77-84.
  • [16] Becidan M., Skreiberg Ø. and Hustad J.E. An experimental study of nitrogen species release during municipal solid waste (MSW) and biomass pyrolysis and combustion. In Science in Thermal and Chemical Biomass Conversion, Ed. Bridgwater A.V., Boocock D.G.B., CPL Press 2006.
  • [17] Zhuo Y., Lemaignen L., Chatzakis I.N., Reed G.P., Dugwell D.R., Kandiyoti R. An Attempt to Correlate Conversions in Pyrolysis and Gasification with FT-IR Spectra of Coals. Energy&Fuels 2000, 14, 1049-1058.
  • [18] Lemaignen L., Zhuo Y., Reed G.P., Dugwell D.R. and Kandiyoti R. Factors governing reactivity in low temperature coal gasification. Part II. An attempt to correlate conversions with inorganic and mineral constituents. Fuel, 81 (3), 2002, 315-326.
  • [19] Robak Z., Stelmach S., Baxter D., Schosger J.P Evaluation of biomass suitability for thermal conversion. Carbon for Energy Storage and Environment Protection CESEP’07, September 2-6, 2007, Kraków, Poland.
  • [20] www.rofire.com
  • [21] Ponzio A., Kalisz S., Blasiak W.: Effect of operation conditions on tar and gas composition in high temperature air/steam gasification of plastic containing waste. Fuel Processing Technology 87 (2006), pp.223-233.
  • [22] Becidan M., Skreiberg Ø. and Hustad J.E. Products distribution and gas release in pyrolysis of thermally thick biomass residues samples. Journal of Analytical and Applied Pyrolysis, 78 (1) 2007, 207-213.
  • [23] Matsuzawa Y., Ayabe M. and Nishino J., Acceleration of cellulose co-pyrolysis with polymer, Polymer Degradation and Stability 71 (2001), pp. 435-444.
  • [24] Soudais Y., Moga L., Blazek J. and Lemort F. Comparative study of pyrolytic decomposition of polymers alone or in EVA/PS, EVA/PVC and EVA/cellulose mixtures. Journal of Analytical and Applied Pyrolysis, 80 (1) 2007, 36-52.
  • [25] de Jong W., Di Nola G., Venneker B.C.H., Spliethoff H. and Wójtowicz M.A. TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors. Fuel, In Press, Available online 28 February 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0045-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.