PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silicon nitride for photovoltaic application

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to present the research results of silicon nitride SiNx films used for industrial silicon solar cells and for third generation solar cells. Design/methodology/approach: The SiNx films were deposited using RF- and LF-PECVD methods. The optical and structural properties were investigated by spectroscopic ellipsometry, XPS, FTIR spectroscopy and X-Ray reflectometry. The passivation properties were investigated by carriers lifetime measurements using a photoconductance decay (PCD) technique. For the photovoltaics of third generation the multilayer structures of SiNx were deposited and annealed in order to obtain the silicon quantum superlattices. These structure were characterized by high-resolution TEM, GI-XRD, photoluminescence, Raman and SPV spectroscopy. Findings: It is shown that the layers deposited by LF PECVD have more profitable optical and electrical properties for industrial silicon solar cells than those deposited by RF PECVD. The other finding is that multi-layer structure of SiNx annealed at high temperature shows the properties of the new semiconductor with the gap energy broader then the gap of the silicon. Research limitations/implications: The maximal density of SiNx layers is equal to 2.6 g/cm3. It is too low to obtain high efficiency mc-Si cells. The deposition process should be further optimized. The other limitation is obtaining a regular structure of quantum superlattice composed of quantum dots with defined diameter and density which is a very difficult technological task. This work should be continued in the future. Practical implications: The results of SiNx investigation can be used to increase the efficiency of mc-Si solar cells. The results of multilayer SiNx investigations may be applied to a solar cells based on silicon QDs superlatice. Originality/value: The work present useful methods for optimisation of passivation properties of SiNx films. The other value of the paper is obtaining new kind of nanomaterial composed of Si quantum dots embed in the dielectric matrix.
Rocznik
Strony
69--87
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Kraków, Poland, marlipin@wp.pl
Bibliografia
  • [1] J. Zhao, A. Wang, M.A. Green, 24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates, Progress in Photovoltaics 7 (1999) 471-474.
  • [2] M.A. Green, Third generation Photovoltaics: Advanced Solar Electricity Generation, Springer-Verlag, Berlin Heidelberg, 2003, 2006.
  • [3] G. Coniber, Third-generation photovoltaics, Materials Today 10 (2007) 42-50.
  • [4] E.-C. Cho, M.A. Green, G. Conibeer, Quantum Dots in a Dielectric Matrix for All-Silicon Tandem Solar Cells, in: Advances in OptoElectronics, Hindwai Publishing Corporation, 2007, 1-11.
  • [5] M.A. Green, G. Conibeer, D. Koning, E.C. Cho, D. Song, Y. Cho, T. Fangsuwannarak, Y. Huang, G. Scardera, E. Pink, S. Huang, C. Jiang, T. Trupke, R. Corkish, T. Puzzer, Progress with all-silicon tandem cells based on silicon quantum dots in a dielectric matrix, Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006, 10-14.
  • [6] F. Duerinckx, J. Szlufcik, A. Ziebakowski, J. Nijs, R. Mertens, Simple and efficient screen printing process for multicrystalline silicon solar cells based on firing through silicon nitride, Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997, 792-795.
  • [7] M. Lipiński, P. Zięba, P. Panek, S. Jonas, S. Kluska, H. Czternastek, A. Szyszka, B. Paszkiewicz, Application of silicon nitride for silicon solar cells, Proceedings of the 29th International Conference of IMAPS, Poland, Koszalin-Darłówko, 2005, 203-206.
  • [8] A. Duerinkx, J. Szlufcik, Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride, Solar Energy Materials and Solar Cells 72 (2002) 231-246.
  • [9] S. Winderbaum, A. Cuevas, F. Chen, J. Tan, K. Hanton, D. Macdonald, K. Roth, Industrial PECVD Silicon Nitride: Surface and Bulk Passivation of Silicon Wafers, Proceedings of the 19th European Photovoltaic Solar Energy Conference, 2004, Paris, France, 576-579.
  • [10] M. Lipiński, P. Zięba, A. Kamiński, Crystalline silicon solar cells in Foundation of Materials Design, Research Signopost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India, 2006:285-308 ISBN:81-308-0093-4, Editors: K.J. Kurzydłowski, B. Major, P. Zięba, 285-308.
  • [11] D.S. Ruby, W.L. Wilbanks, C.B. Fleddermann, A statistical analysis of the effect of PECVD deposition parameters on surface and bulk recombination in silicon solar cells, Proceedings of the 1st World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Hawaii, 1994, 1335-1334.
  • [12] Z. Chen, A. Rochatgi, Silicon surface and bulk defect passivation by low temperature PECVD oxides and nitrides, Proceedings of the 1st World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Hawaii, 1994, 1331-1334.
  • [13] A. Rohatgi, V. Yelundur, J. Jeong, A. Ebong, D. Meier, A.M. Babor, M.D. Rosenblum, Aluminium-enhanced PECVD SiNx hydrogenation in silicon ribbons, Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, UK, 2000, 1120-1123.
  • [14] A.G. Aberle, T. Lauinger, R. Hezel, Remote PECVD silicon nitride- a key technology for the crystalline silicon PV industry of the 21st century?, Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997, 684-689.
  • [15] M. Lipiński, P. Panek, S. Kluska, P. Zięba, A. Szyszka, B. Paszkiewicz, Defect passivation of multicrytsalline silicon solar cells by silicon nitride coatings, Materials Science 24/4 (2006) 1009-1016.
  • [16] M. Lipiński, P. Zięba, S. Jonas, S. Kluska, M. Sokołowski, H. Czternastek, Optimisation of SiNx:H layer for multicrystalline silicon solar cells, Opto-Electronics Review 12 (2004) 41-44.
  • [17] R. Ekai, M. Verbeek, H. Nagel, R. Auer, A. Aberle, R. Hezel, Optimisation of SiN antireflection coatings for encapsulated and non-encapsulated silicon solar cells with V-groove surface texture, Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria, 1998, 1430-1433.
  • [18] H. Nagel, A.G. Aberle, R. Hezel, Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide, Progress in Photovoltaics 7 (1999) 245-260.
  • [19] J. Schmidt, J.D. Moschner, J. Henze, S. Dauwe, R. Hezel, Recent Progress in the Surface Passivation of Silicon Solar Cells using Silicon Nitride, Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, 391.
  • [20] M.J. Kerr, Surface, emitter and bulk recombination in silicon and development of silicon nitride passivated solar cells, Ph. D. Thesis, the Australian National University, 2002.
  • [21] A.G. Aberle, R. Hezel, Progress in low-temperature surface passivation of silicon solar cells using remote - plasma silicon nitride, Progress in Photovoltaics 5 (1997) 29-50.
  • [22] B. Lenkeit, R. Hezel, Improved understanding of the surface-passivating properties of RPECVD silicon nitride on p-type crystalline silicon, Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001, 342.
  • [23] H. Mäckel, R. Lüdemann, Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation, Journal of Applied Physics 92/5 (2002) 2602-2609.
  • [24] H.F.W. Dekkers, L. Carnel. G. Beaucarne, W. Beyer, Diffusion Mechanism Through PECVD SNx:H For A Fast Defect Passivation of mc-Si Solar Cell, Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005,721-724.
  • [25] H.F.W. Dekkers, S. De Wolf, G. Agostinelli, F. Duerinckx, G. Beaucarne, Requirements of PECVD SiNx:H layers for bulk passivation of mc-Si, Solar Energy Materials and Solar Cells 90 (2006) 3244-3250.
  • [26] I.G. Romijn, W.J. Soppe, H.C. Rieffe, A.R. Burgers, A.W. Weeber, Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, 2005, 1352-1355.
  • [27] I.G. Romijn, W.J. Soppe, H.C. Rieffe, A.R. Burgers, A.W. Weeber, Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, 2005, 1352-1355.
  • [28] I.G. Romijn, H.C. Rieffe, A.W. Weeber, W.J. Soppe, Passivating Mc-Si Solar Cells Using SiNx:H: How to Tune to Maximum Efficiencies, Proceedings of the 15th International Photovoltaic Science and Engineering Conference (PVSEC-15), Shanghai, China, 2005, 303-304.
  • [29] J. Hong, W.M.M. Kessels, W.J. Soppe, A.W. Weber, W.M. Arnodbik, M.W.M. van de Sanden, Influence of the high-temperature “firing” step on high-rate plasma deposited silicon nitride films used as bulk passivating antireflection coating on silicon solar cells, Journal of Vacuum Science and Technology B 21/5 (2003) 2123-2132.
  • [30] M. Blech, A. Laades, C. Ronning, B. Schroter, C. Borschel, D. Rzesanke, A. Lawerenz, Detailed Study of PECVD Silicon Nitride And Correlation of Various Characterization Techniques, Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2009, 507-511.
  • [31] A.W. Weber, H.C. Rieffe, W.C. Sinke, W.J. Soppe, Structural and Passivating Properties of SiNx:H Deposited using Different Precursor Gases, Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 2004, 1005-1008.
  • [32] A.W. Weeber, H.C. Rieffe, I.G. Romijn, W.C. Sinke, W.J. Soppe, The fundamental properties of SiNx:H determine its passivating qualities, Proceedings 31th IEEE Photovoltaic Specialists Conference, Florida, USA, 2005, 1043-1046.
  • [33] A.J.M. van Ervan, R.C.M. Bosch, A.W. Weeber, M.D. Bijker, Effects of Different Firing Profiles on Layer Characteristics and Passivation. Properties of Industrial ETP Deposited Silicon Nitride Films, Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibiton, Paris, France, 2004, 927-930.
  • [34] J.-F. Lelievre, E. Fourmond, A. Kamiński, O. Palais, D. Ballutaud, M. Lemiti, Study of the composition of hydrogenated silicon nitride SiNx:H for efficient surface and bulk passivation of silicon, Solar Energy Materials and Solar Cells 93 (2009) 1281-1289.
  • [35] C. Boehme, G. Lucovsky, H Loss, Mechanism During Anneal of Silicon Nitride: Chemical Dissociation, Journal of Applied Physics 88 (2000) 6055-6059.
  • [36] W. Shockley, H.J.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, Journal of Applied Physics 32 (1961) 510-519.
  • [37] J.A. Woolam, CompleteEASETM Data Analysis Manual, 2008.
  • [38] G.E. Jellison, F.A. Modine, P. Doshi, A. Rohatgi, Spectroscopic ellipsometry characterization of thin-film silicon nitride, Thin Solid Films 313-314 (1998) 193-197.
  • [39] C.S. Cook, T. Daly, R. Liu, M. Canonico, Q. Xie, R.B. Gregory, S. Zollner, Spectroscopic ellipsometry for in-line monitoring of silicon nitrides, Thin Solid Films 455-456 (2004) 794-797.
  • [40] A. Gibaud, S. Hazra, X-ray reflectivity and diffuse scattering, Current Science 78 (2000) 1467-1477.
  • [41] B. Bierska-Piech, M. Wojciech, T. Goryczka, E. Łągiewka, The optimalization conditions for registration of X-ray reflectivity, Materials Engineering 27/3 (2006) 342-345.
  • [42] E. Bustarret, M. Bensouda, M. Habrad, J. Bruyere, S. Paulin, S. Gujrathi, Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis Physical Review B 38/12 (1988) 8171-8184.
  • [43] F. Giorgis, F. Giuliani, C. Pirri, E. Tresko, C. Summonte, T. Rizzoli, R. Galloni, A. Desalvo, P. Rava, Photoluminescence and electronic density of states in a-C:H films, Philosophical Magazine B 77 (1998) 925-944.
  • [44] R.A. Sinton, A. Cuevas, M. Stuckings, Quasi-Steady-State Photoconductance, A New Method for Solar Cell Material and Device Characterization, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, 1996, 457-460.
  • [45] H. Nagel, C.vBerge, A.G. Aberle, Generalised analysis of quasi steady-state and quasi-transient measurements of carrier lifetimes in semiconductors, Journal of Applied Physics 86 (1999) 6218-6221.
  • [46] J. Brody, A. Rohatgi, A. Ristow, Review and comparison of equations relating biulk and surfach recombination velocity to effective measured dunder flash lamp illumination, Solar Energy Materials and Solar Cells 77/3 (2003)293-301.
  • [47] D. Macdonald, A. Cuevas, Tramping of minority carriers in multicrystalline silicom, Applied Physics Letters 74 (1999) 1710-1712.
  • [48] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlatice approach, Applied Physics Letters 80 (2002) 661-663.
  • [49] M.A. Green et al., All -Silicon Tandem Cells Based on Artificial Semiconductor Synthesisted using Silicon Quantum Dots in a Dielectric Matrix, Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, 2005, 3-7.
  • [50] M.A. Green M.A., Recent developments and future prospects for third generation and other advanced cells, IEEE 2006, 15-19.
  • [51] G.N. Parsons, G. Lucovsky, Silicon-hydrogen bond stretching vibrations in hydrogenated amorphous silicon-nitride alloys, Physical Review B 41 (1990) 1664-1667.
  • [52] Z. Jing, J.L. Whitten, G. Lucovsky, Si-H bond in O-subsitutional doping of a-Si:H, Physical Review B 45 (1992) 13978-13983.
  • [53] G. Lucovsky, Chemical effects on the frequencies of Si-H vibrations in amorphous solids, Solid State Communications 29 (1979) 571-576.
  • [54] G. Scardera, T. Puzzer, I. Perez-Wurfl, G. Conibeer, The effect of annealing temperature on the photoluminescence from silicon nitride multilayer structures, Journal of Crystal Growth 310 (2008) 360-3684.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0040-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.