PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and properties of GMA surfaced armour plates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the combat vehicles many materials can be used for the armour. Application of the monolithic armour plates in light combat vehicles is limited by the high armour weigh. Introduction of the layered armour plates is a way to limit the vehicle weight. In the paper test results of graded and nanostructural GMA surfaced armour plates are presented. Design/methodology/approach: Metallographic structure, chemical composition and hardness of surfaced layers were investigated in order to examine the influence of the layered armour plate construction on penetration failure mechanism. EDS chemical microanalysis was carried out on the cross section of surfaced armour plates to find the correlation between the structure components distribution, a GMA surfaced layer thickness and the armour plates ballistic resistance. Findings: The experimental tests confirmed a high ballistic resistance of the GMA surfaced armour plates against B-32 armour-piercing incendiary projectile. The special microstructure of nanostructural deposited metal provides high hardness and resistance against impact load. Practical implications: In order to achieve a high ballistic resistance of GMA surfaced armour, nanostructural layer thickness of at least 4.5 [mm] is needed. To optimize the armour plate weight and high ballistic resistance the ratio of soft austenite under-layer thickness and total armour plate thickness need to be tested. Originality/value: The special microstructure of nanostructural deposited metal, provides high hardness and resistance against impact load.
Rocznik
Strony
109--116
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] E. Chin, Army focused research team on functionally graded armour composites, Materials Science and Engineering A 259 (1999) 155-161.
  • [2] P. Jena, K. Ramanjeneyulu, K. Siva Kumar, T. Balakrishna Bhat, Ballistic studies on layered structures, Materials and Design 30 (2009) 1922-1929.
  • [3] T. Børvik, S. Dey, A.H. Clausen, Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles, International Journal of Impact Engineering 36 (2009) 948-964.
  • [4] R. Lane, B. Craig, W. Babcock, Materials For Blast And Penetration Resistance, The AMPTIAC 6 (2002) 39-45.
  • [5] A. Pettersson, P. Magnussona, P. Lundberga, M. Nygren, Titanium-titanium diboride composites as part of a gradient armour material, International Journal of Impact Engineering 32 (2005) 387-399.
  • [6] M. Übeyli, R. Yıldırım, B. Ögel, Investigation on the ballistic behaviour of Al2O3/Al2024 laminated composites, Journal of Materials Processing Technology 196 (2008) 356-364.
  • [7] Z. Keçeli, H. Ögünç, T. Boyraz, H. Gökçe, O. Addemir, M. Lütfi Öveço􀃷lu, Effect of B4C addition on the micro-structural and thermal properties of hot pressed SiC ceramic matrix composites, Journal of Achievements in Mechanical and Manufacturing Engineering 37/2 (2009) 428-433.
  • [8] E. Levashov, Synthesis and Application of New Functionally Graded Materials and Coatings, Proceedings of the 1st France-Russia Seminar “New Achievements In Materials Science”, Nancy, France, 2004.
  • [9] M. Wang, F. Meng, N. Pan, Transport properties of functionally graded materials, Journal of Applied Physics 102 (2007) 033514.
  • [10] L. Jaworska, M. Rozmus, B. Królicka, A. Twardowska, Functionally graded cermets, Journal of Achievements in Mechanical and Manufacturing Engineering 17 (2006) 73-76.
  • [11] W. Gooch, M. Burkins, R. Palicka, Development and Ballistic Testing of a Functionally Gradient Ceramic/Metal Applique, Proceedings of the RTO AVT Specialists’ Meeting “Cost Effective Application of Titanium Alloys in Military Platforms”, Loen - Norway, 2001.
  • [12] M. Pines, Pressureless Sintering Of Powder Processed Functionally Graded Metal-Ceramic Plates, Mechanical Engineering Theses and Dissertations UM Theses and Dissertations, 2004.
  • [13] W.G. Hunt, Nanomaterials: Nomenclature, novelty, and necessity, JOM 56 (2004) 13-18.
  • [14] A. Klimpel, T. Kik, J. Górka, A. Czupryński, P. Hajduk, Robotized PTA surfacing of nanomaterial layers, Journal of Achievements in Mechanical and Manufacturing Engineering 37/2 (2009) 644-651.
  • [15] K. Jamroziak, M. Bocian, Identification of composite materials at high speed deformation with the use of degenerated model, Journal of Achievements in Mechanical and Manufacturing Engineering 28/2 (2008) 171-174.
  • [16] M. Kulisiewicz, M. Bocian, K. Jamroziak, Criteria of material selection for ballistic shields in the context of chosen degenerated models, Journal of Achievements in Mechanical and Manufacturing Engineering 31/2 (2008) 505-509.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0040-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.