PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical approach of PP/MMT polymer nanocomposite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Paper summarizes and focus on investigation of PP/MMT nanocomposite in mechanical and statistical approach. Design/methodology/approach: Research has been performed basing on design of experiment. Findings: Considerable predominance of PP + nanoclay mixture in the increment of absorption of energy is found; Level of absorbed energy, required to break the specimens during fracture test is two times higher after structure reinforcement by nanoparticles. Research limitations/implications: Non-conventional injection moulding gives us possibility to control orientation level and develop morphology and it is limited due to non-conventional injection system limitation (pressure, time etc). Practical implications: PP/MMT nanocomposites are the materials with promising future wide range of application also in the specific branches like car and aircraft industries. Originality/value: Nanocomposites obtained in experiment obtaining allow to achieve shish-kebab structure, reinforce skin/core structure and improve mechanical behaviour
Rocznik
Strony
94--100
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] J.C. Viana, A.M. Cunha, N. Billon, The Tensile Behaviour of an Injection-Moulded Propylene-Ethylene, Polymer International 43 (1997) 159-166.
  • [2] L.A. Utracki, Polymer Blends Handbook, Kluwer Academic Publishers, 2002.
  • [3] M. Cunha, S. Fakirov, Structure development during polymer processing, Kluwer Academic Publishers, 2000.
  • [4] M. Bilewicz, J.C. Viana, A.M. Cunha, L.A. Dobrzański, Morphology diversity and mechanical response of injection moulded polymer nanocomposites and polymer-polymer composites, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 159-165.
  • [5] G. Wróbel, Z. Rdzawski, G. Muzia, S. Pawlak,The application of transient thermography for the thermal characterisation of carbon fibre/epoxy composites, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 49-56.
  • [6] B. Ziębowicz, M. Drak, L.A. Dobrzański, Corrosion resistance of the composite materials: nanocrystalline powder - polymer type in acid environment, Journal of Achievements in Materials and Manufacturing Engineering 36/2 (2009) 126-133.
  • [7] L.A. Dobrzański, A. Tomiczek, B. Tomiczek, A. Ślawska-Waniewska, O. Iesenchuk, Polymer matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 magnetostrictive particles, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 16-23.
  • [8] C.E. Powell, G.W. Beall, Physical properties of polymer/clay nanocomposites, Solid State and Materials Science 10 (2006) 73-80.
  • [9] J.C. Viana, N. Billon A.M. Cunha, The Thermomechanical Environment and the Mechanical Properties of Injection Moldings, Polymer Engineering and Science 44/8 (2004) 1522-1533.
  • [10] M. Rojek, J. Stabik, The influence of X-rays on strength properties of polyester vascular system prosthesis, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 47-54.
  • [11] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 218-225.
  • [12] G. Wróbel, J. Kaczmarczyk, J. Stabik, M. Rojek, Numerical models of polymeric composite to simulate fatigue and ageing processes, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 31-38.
  • [13] A. Lijia, H. Dayong, J. Jing, Mechanical properties and miscibility of polyethersulfone/ phenoxy blends, Journal of Applied Polymer Science 59 (1996) 1843-1847.
  • [14] Z. Xie, J. Sheng, Z. Wan, Mechanical properties and morphology of polypropylene/polystyrene blends, Journal of Macromolecular Science-Physics B 40/2 (2001) 251-261.
  • [15] T. Wan, L. Chen, Y.C. Chua, Crystalline Morphology and Crystallization kinetics of Poly(ethylene terephthalate)/clay Nanocomposites, Journal of Applied Polymer Science 94 (2004) 1381-1388.
  • [16] S.S. Ray, M. Biswas, Preparation and evaluation of composites from montmorillonite and some heterocyclic polymers: 3.A water dispersible nanocomposite from pyrrole-montmorillonite polymerization system, Materials Research Bulletin 35 (1999) 1187-1194.
  • [17] A.S. Solis, I. Romero-Ibarra, M. Estrada, Mechanical and rheological studies on polyethylene terephthalate-montmorillonite nanocomposites, Polymer Engineering and Science 44 (2004) 1094-1102.
  • [18] G. Gorrasi, L. Tammaro, M. Tortora, V. Vittoria, D. Kaempfer, Transport properties of organic vapors in nanocomposites of isotactic polypropylene, Journal of Polymer Science, Part B: Polymer Physics 41/15 (2003) 1798-1805.
  • [19] Y. Kojima, A. Usuki, M. Kawasumi, Mechanical properties of nylon 6-clay hybrid, Journal Material Research 8/5 (1993) 1185-1189.
  • [20] Q. Zhang, Y. Wang, Q. Fu, Shear-Induced Change of Exfoliation and Orientation in Polypropylene/ Montmorillonite Nanocomposites, Journal of Polymer Science Part B: Polymer Physics 41 (2003) 1-10.
  • [21] A.J. Pennings, Lamellar and fibrillar crystallization of polymers, Die Makromolekulare Chemie Supplement 2 (1979) 99-142.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0040-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.