PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Cooling rate influence on microstructure of the Zn-Al cast alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this work was presented the cooling rate influence on microstructure of the Zn-Al cast alloy. This research work presents also the investigation results of derivative thermoanalysis performed using the UMSA device. The material used for investigation was the ZnAl4Cu1 alloy. Design/methodology/approach: Moreover the analysis of cooling rate influence on the derivative curve changes was performed as a result of the measured crystallisation kinetic changes. For the assessment of the cooling rate influence on the mechanical properties also hardness measurements were performed using the Rockwell hardness device. Findings: The treated sample is without holes, cracks and defects as well as has a slightly higher hardness value compared to the as-cast material. Research limitations/implications: The material was examined metallographically and analyzed qualitatively using light and scanning electron microscope as well as the area mapping and point-wise EDS microanalysis. The performed investigation are discussed for the reason of an possible improvement of thermal and structural properties of the alloy. Practical implications: The investigated material can find its use in the foundry industry; an improvement of component quality depends mainly on better control over the production parameters. Originality/value: This work provides better understanding of the thermal characteristics and processes occurred in the new developed alloy. The achieved results can be used for liquid metal processing in science and industry and obtaining of a required alloy microstructure and properties influenced by a proper production conditions.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, beata.krupinska@polsl.pl
Bibliografia
  • [1] Z. Górny, Modern plastic molding on the basis of non-ferrous metals, ZA-PIS, Cracow, 2005.
  • [2] L.A. Dobrzański, Metallurgy descriptive non-ferrous metals, Silesian University of Technology Publishing House, Gliwice, 2008.
  • [3] Cz. Adamski, Z. Banderek, T. Piwowarczyk, Microstructure of casting alloys of copper and zinc, Śląsk, Katowice, 1972.
  • [4] J. Sobczak, Innovations in foundry, Vol. 1, Foundry Research Institute, Cracow, 2007.
  • [5] T.J. Chen, Y. Hao, J. Sun, Y.D. Li, Effects of Mg and RE additions on the semi-solid microstructure of a zinc alloy ZA27, Science and Technology of Advanced Materials 4/6 (2003) 495-502.
  • [6] T. Savaskan, M.S. Turhal, Relationships between cooling rate, copper content and mechanical properties of monotectoid based Zn-Al-Cu alloys, Materials Characterization 51/4 (2003) 259-270.
  • [7] E.M. da Costa, Study of the influence of copper and magnesium additions on the microstructure formation of Zn-Al hypoeutectic alloys, Journal of Alloys and Compounds 488/1 (2009) 89-99.
  • [8] R.J. Barnhurst, Gravity casting manual for zinc - aluminium alloys, Noranda Sales, Toronto, 1989, 3.
  • [9] A.A. Prensyakov, Y.A. Gorban, V.V. Chervyakova, The aluminium- zinc phase diagram, Russian Journal of Physical Chemistry 6 (1961) 632-633.
  • [10] W. Krajewski, Shaping the structure of Zn-Al alloys, the addition of mortar Zn-Ti, AGH, Cracow, 2001.
  • [11] Z. Górny, Casting non-ferrous alloys, WNT, Warsaw, 1992.
  • [12] E. Fraś, Crystallization of metals and alloys, PWN, Warsaw, 1992.
  • [13] W.R. Osorio, C.A. Santos, J.M.V. Quaresma, A. Garcia, Mechanical properties as a function of thermal parameters and microstructure of Zn-Al castings, Journal of Materials Processing Technology 143-144 (2003) 703-709.
  • [14] A.E. Aresa, L.M. Gassac, S.F. Gueijmanb, C.E. Schvezov, Correlation between thermal parameters, structures, dendritic spacing and corrosion behavior of Zn-Al alloys with columnar to equiaxed transition, Journal of Crystal Growth 310 (2008) 1355-1361.
  • [15] W.R. Osorio, C.M. Freire, A. Garcia, The effect of the dendritic microstructure on the corrosion resistance of Zn-Al alloys, Journal of Alloys and Compounds 397 (2005) 179-191.
  • [16] W.R. Osorio, A. Garcia, Modeling dendritic structure and mechanical properties of Zn-Al alloys as a function of solidification conditions, Materials Science and Engineering A 325 (2002) 103-111.
  • [17] B.K. Prasad, O.P. Modi, Slurry wear characteristics of zinc-based alloys: Effects of sand content of slurry, silicon addition to alloy system and traversal distance, The Chinese Journal of Nonferrous Metals 19/2 (2009) 277-286.
  • [18] Y.H. Zhu, Phase transformations of eutectoid Zn-Al alloys, Journal of Materials Science 36/16 (2001) 3973-3980.
  • [19] L.A. Dobrzański, M. Kasprzak, W. Kasprzak, J.H. Sokolowski, A novel approach to the design and optimisation of aluminium cast component heat treatment processes using advanced UMSA physical simulations, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 139-142.
  • [20] W. Kasprzak, J.H. Sokolowski, M. Sahoo, L.A. Dobrzański, Thermal and structural characteristics of the AM50 magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 131-138.
  • [21] H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J.H. Sokolowski, The effect of average cooling rates on the microstructure of the Al-20% Si high pressure die casting alloy used for monolithic cylinder blocks, Journal of Materials Processing Technology 203/1-3 (2008) 333-341.
  • [22] M. Kasprzak, W. Kasprzak, J.H. Sokolowski, Applications of the Universal Metallurgical Simulator and Analyzer (UMSA) for the Physical Simulation of Industrial Light Metals Castings Processes, Proceedings of the International Conference "Technology Transfer Partnership for the Development of the Aluminium Industry", Montreal, 2002.
  • [23] M. Krupiński, K. Labisz, L.A. Dobrzański, Structure investigation of the Al-Si-Cu alloy using derivative thermo analysis, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 47-54.
  • [24] M. Krupiński, K. Labisz, L.A. Dobrzański, Z.M. Rdzawski, Derivative thermo-analysis application to assess the cooling rate influence on the microstructure of Al-Si alloy cast, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 115-122.
  • [25] G. Pelayo, J.H. Sokolowski, R. Lashkari, A case based reasoning aluminum thermal analysis platform for the prediction of W319 Al cast component characteristics, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 7-17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0040-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.