PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The wear mode identyfication of hard materials as means for conccurent estimation of their abrasion resistance and brittle fracture

Autorzy
Identyfikatory
Warianty tytułu
PL
Identyfikacja przebiegu zużywania materiałów ceramicznych i węglików spiekanych jako sposób na jednoczesną ocenę ich odporności na zużycie i kruche spiekanie
Języki publikacji
EN
Abstrakty
EN
The fracture toughness is often the major limiting parameter governing the use of hard materials tools. Hence there is a need for research aimed at increasing toughness without sacrificing wear resistance. To aid in this objective, a simple and reliable integrated testing method, in which a conjoin action involving both fracture and abrasion occur, is needed. One such method currently developed is presented in this paper. The method is based on the concept of edge chipping during the initial transition stage of abrasion wear which is controlled by brittle fracture process. The limitation of the method for tougher materials such as tool steel as well as for very brittle materials such as ceramics was also described. Evaluation of the empirical relationship between mass loss as a result of edge chipping during the initial transition stage of abrasive wear and fracture toughness in the form of formulae was calculated and discussed.
PL
Kruche pękanie materiałów używanych na ostrza narzędzi urabiających w wielu przypadkach ich zastosowań jest parametrem kontrolującym trwałość tych narzędzi. Stąd zapotrzebowanie na badania technologiczne, których celem jest zwiększanie ciągliwości ww. materiałów bez jednoczesnego obniżania ich odporności na zużywanie trybologiczne. Dla ułatwienie laboratoryjne weryfikacji efektów powyższych zabiegów technologicznych potrzebna jest prosta, zintegrowana metoda testowania i rankingu materiałów poddawanych oddziaływaniom wywołującym kruche pękanie i zużywanie cierne próbek. Metodę aktualnie opracowaną w Instytucie Mechanizacji Górnictwa przedstawia prezentowany referat. Metoda bazuje na koncepcji, potwierdzonej we wcześniejszych opracowaniach autora, że niszczenie krawędzi próbki we wstępnym etapie jest wywoływane przez proces kruchego pękania. W tym Opracowaniu starano się wyznaczyć granicę stosowalności metody z punktu widzenia kruchości i ciągliwości badanych materiałów. Przedstawiono i przedyskutowano także zależności korelacyjne, będące podstawą do wyliczeń poszukiwanych parametrów materiałowych.
Rocznik
Strony
99--124
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
Bibliografia
  • 1. K. Kato: Tribology of ceramics, Wear, 136 (1990) 117-133.
  • 2. S. Jahamnir, Friction and Wear of Ceramics, Marcel Dekker, New York 1994, 99-115 289-311.
  • 3. S.M. Hsu and M.C. Shen: Ceramic wear maps. Wear, 200, 1996, 154-175.
  • 4. J.B. Wachtman: Mechanical Properties of Ceramics, John Wiley & Sons, New York 1996,65-88.
  • 5. I.J. MC Cohn: Ceramic Hardness, Plenum Press, New York 1990,46-207.
  • 6. S.F. Ścieszka: Simultaneous Abrasion and Brittle Fracture Testing by Identification of the Wear Mode of Hardmetal Specimens, NFL Report MCF1-2001-01159, Teddington, 2003.
  • 7. B. Roebuck, M. Gee, E.G. Bennett and R. Morrell: Mechanical Tests for Hardmetal, NPL Good Practice Guide No 20, Teddington 2000.
  • 8. R. Morrell: Flexural Strength Testing of Ceramics and Hardmetals, NPL Good Practice Guide No 7, Teddington 1997.
  • 9. M. Ogilvy, CM. Perrott and J. Suiter: On the Indentation Fracture of Cemented Carbide -Survey of Operative Fracture Modes, Wear, 43 (1977) 239-252.
  • 10. E. Bennett, L. Lay, R. Morrell and B. Roebuck: Microstructural Measurements on Ceramics and Hardmetals, NPL Good Practice Guide No 21, Teddington 1999.
  • 11. M.T. Laugier: Palmqvist indentation toughness in WC-Co composites, J. Mater. Sci. Lett. (1987) 6, 897-900.
  • 12. W.E. Jamison: Wear Control Handbook, eds. Peterson M B and Winer W, ASME, New York 1980, 859-887.
  • 13. J. Larsen-Basse: Wear of hardmetals in rock drilling, Powder Metallurgy, Vol. 16, 1, (1973).
  • 14. G.G. Clark: Principles of rock drilling and bit wear, Colorado SOM Quarterly, Vol. 77, 2, 1982.
  • 15. H. Guo, N. Aziz and L.C. Schmidt: Rock cutting study using linear elastic fracture mechanics, Engineering Fracture Mechanics, 5 (1992) 771-780.
  • 16. S.F. Ścieszka and K. Filipowicz: An integrated testing method for cermet abrasion resistance and fracture toughness evaluation. Wear, 216 (1998) 202-210.
  • 17. S.F. Ścieszka: Wear fransition as a means of fracture toughness evaluation of hardmetals, Tribology Letters, 11, 3-4 (2001) 185-194.
  • 18. Z. Fang, A. Griffo, G. Lockwood and J. Bitler: Properties of a high toughness cemented tungsten carbide composite. Advances in Powder Metallurgy and Particulate Materials, MPIF, New Jersey 1999, 10-123-131.
  • 19. B. Roebuck, E. Bennett, L. Lay and R. Morrell: Palmqvist toughness for hard and brittle materials, NPL Good Practice Guide No 9, Teddington 1998.
  • 20. S. Wayne, J. Baldoni and S. Buljan: Abrasion and erosion of WC-Co with controlled microstructures, Tribology Transactions, 33 (1990) 611-617.
  • 21. M. Laugier: A microstructural model relating fracture toughness and hardness in WC composites. Powder Metallurgy International, 18 (1986) 330-332.
  • 22. S. Luyckx, V. Richter, D. Quigley and L. Makhere: On the relationship between fracture toughness, hardness and grain size in WC-Co alloys, Proc. of the Int. Conf on PM Materials, Kosice 1996, 109-116.
  • 23. Y Yanaba, K. Hayashi: Relation between fracture surface area of a flexural strength specimen and fracture toughness for WC-10 mass %Co Cemented carbide and Si₃N₄ ceramics, Materials Science and Engineering, A209 1996,167-174.
  • 24. B. Lawn: Fracture of brittle solids, Cambridge University Press, 1995
  • 25. K. Zeng, K. Breder and D.J. Rowcliffe: The Hertzian stress field and formation of cone cracks. Acta Meetall. Mater. 40 (1992) 10, 2505-2605.
  • 26. S.G. Roberts: Hertzian Testing of ceramics, British Ceramic Transactions, 99 (200) 1, 31-38.
  • 27. Y. Li and D.A. Hills: The Hertzian cone crack. Transactions of the ASME, 58 (1991) 120-127.
  • 28. M. D. Thouless, A.G. Evans, M.F. Ashby and J.W. Hutchinson: The edge cracking and spalling of brittle plates. Acta Metall. 35 (1987) 6,1333-1341.
  • 29. T. Inoue, T.Kuniki and J. Shibata: A study on the edge-break in machining of brittle materials. Bull. Japan Soc of Prec. Eng. 23 (1989) 1,10-16.
  • 30. N.J. McCormick: Edge Flaking of brittle materials, PhD Thesis, NPL Teddington 1993
  • 31. R. Morrell and A.J. Gant: Edge chipping of hard materials, J. J. of Refractory Metals and Hard Materials, 19 (2001) 293-301.
  • 32. S.F. Ścieszka, Testing mechanical properties of materials for mining tools. Abrasive wear measurement methods - a review. ZN Pol. Śl., nr 1599, Gliwice 2003,453-471.
  • 33. S.F. Ścieszka: Testing mechanical properties of materials for mining tools. Fracture toughness measurement methods - a review. ZN Pol. Śl., nr 1599, Gliwice 2003,433-451.
  • 34. E. Hombogen: The role of fracture toughness in the wear of materials. Wear, 33 (1975) 251-259.
  • 35. I.M. Hutchings: Tribology, Friction and Wear of Engineering Materials, Arnold, London 1992, p. 153.
  • 36. M. Slasar, J. Dusza and L. Parilak: Micromechanics of fracture WC-Co hardmetals, ed. Ahnond E, Brookes C and Warren R, in Science of Hard Materials, A Hilger Ltd, Bristol 1986.
  • 37. J. Larsen-Basse: Binder extrusion in sliding wear of WC-Co alloys. Wear, 105 (1985) 247-256.
  • 38. D. Rowcliffe, V. Jayaram, M. Hibbs and R. Sinclair: Compression deformation and fracture in WC materials. Materials Science and Engineering, A105/106 (1988) 299-303.
  • 39. H. Osbum: Wear of rock-cutting tools. Powder Metallurgy, 12 (1969) 24,471-502.
  • 40. R. Blomberg, C. Perrott and P. Robinson: Similarities in the mechanisms of wear of tungsten carbide-cobalt tools in rock and metal cutting, Wear, 27 (1974) 383-390.
  • 41. R. Blomberg, C. Perrott and P. Robinson: Abrasive wear of tungsten carbide-cobalt composites. Wear mechanisms. Materials Science and Engineering, 13 (1974) 93-100.
  • 42. J. Larsen-Basse and E. Koyanagi: Abrasion of WC-Co alloys by quartz, J. of Lubrication Technology, 101 (1979) 208-211.
  • 43. A. Cuddon and C. Allen: The wear of tungsten carbide-cobalt cemented carbides in a coal ash conditioner. Wear, 153 (1992) 375-385.
  • 44. K. Anand and H. Conrad: Microstructure and scaling effects in the damage of WC-Co alloys by single impacts of hard particles, J. Materials Science, 23 (1988) 2931-2942.
  • 45. L. Sigl and H. Exner: Experimental study of the mechanics of fracture m WC-Co alloys. Metallurgical Transactions, 18 (1987) 1299-1308.
  • 46. J. Dusza: Fractographic failure analysis of brittle materials, hit. J. of Materials and Product Technology, 15 (2000) 292-355.
  • 47. K. Brookes: Novel approaches lead to better wear resistance in hard materials, Metal Powder Report, October (2003) 34-39.
  • 48. K. Brookes: Functional design puts the bite into hard and refractory metals, Metal Powder Report, November (2003) 20-25.
  • 49. X. Deng, B. Patterson, K. Chawla, M. Koopman, Z. Fang, G. Lockwood and A. Griffo: Mechanical properties of a hybrid cemented carbide composite, I. J. of Refractory Metals & Hard Materials 19 (2001) 547-552.
  • 50. Z. Fang, A. Griffo, G. Lockwood and J. Bitler: Properties of a high toughness cemented tungsten carbide composite, Conference Proceedings Advances in Powder Metallurgy and Particulate Materials, MpiE, New Jersey (1999) 10, 123-131.
  • 51. Z. Fang, A. Griffo, B. White, G. Lockwood, D. Belnap, G. Hihnas and J. Bitler: Fracture resistant super hard materials and hardmetals composite with functionally designed microstructure, L J. of Refractory Metals & Hard Materials, 19 (2001) 453-459.
  • 52. R. Toth and J. Keanne: Tough coats on hard powders - a revolution in the making? Metal Powder Report, September (2003) 14-20.
  • 53. G. Gille, B. Szesny, K. Dreyer, H. van den Berg, J. Schmidt, T. Gestrich and G. Leitner: Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts, L J. of Refractory Metals & Hard Materials, 20 (2002) 3-22.
  • 54. L. Prakash: Application of fine grained tungsten carbide based cemented carbides, L J. of Refractory Metals & Hard Materials, 13 (1995) 257-264.
  • 55. W. Schubert: A. Bock and B. Lux, General aspects and limitations of conventional ultrafine WC powder manufacture and hard metal production, I. J. of Refractory Metals & Hard Materials, 13 (1995) 281-296.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0032-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.