PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acceleration of charged particles in laser beam

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper was to find parameters of the laser and maser beams in numerical ways with additionally applied external static axial magnetic field which satisfies the proper conditions for charged particle acceleration. Design/methodology/approach: The set acceleration was designed in order to obtain the possible high kinetic energy of the charged particles in the controllable manner. This was achieved applying a circularly polarized high intensity laser beam and a static axial magnetic field, both acting on the particle during the proper period. Findings: The quantitative illustrations of the calculation results, in a graphical form enabled to discuss the impact of many parameters on the acceleration process of the electrons and protons. We have found the impact of the Doppler Effect on the acceleration process to be significant. Increase in laser or maser beam intensity results in particle's energy increase and its trajectory dimension. However, increase in external magnetic field results in shrinking of the helical trajectories. It enables to keep the particle inside the laser beam. Research limitations/implications: Limits in the energy of accelerated particles arise from the limits in up-to-date available laser beam energy and the beam diameters. Originality/value: The authors show the parameters of the circularly polarized laser beam which should be satisfied in order to obtain the desired energy of the accelerated particles. The influence of the magnetic field strength is also shown.
Rocznik
Strony
98--103
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Education Department, Technical University of Radom named after K. Pułaski, ul. J. Malczewskiego 20A, 26-600 Radom, Poland, malachowski.m.j@interia.pl
Bibliografia
  • [1] B.A. Remington, D. Arnett, R.P. Drake, H. Takabe, Modelling astrophysical phenomena in the laboratory with intense lasers, Science 284 (1999) 1488- 1493.
  • [2] P. Baum, A.H. Zewail, Attosecond electron pulses for 4d diffraction and microscopy, Proceedings of the National Academy of Sciences of the United States of America - PNAS 104 (2007) 18409-18414.
  • [3] J.D. Lindl, P. Amendt, R. Berger, G. Glendinning, S.H. Glenzer, S.W. Haan, R. Kauffman, O.L. Landen, L.J. Suter, The physics basis for ignition using indirect-drive targets on the national ignition facility, Physics of Plasmas 11 (2004) 339-349.
  • [4] K.W.D. Ledingham, P. McKenna, R.P. Singhal, Appli-cations for nuclear phenomena generated by ultra-intense lasers, Science 300 (2003) 1107-1111.
  • [5] F.V. Hartemann, S.N. Fochs, G.P. Le Sage, N.C. Luhmann, Jr., J.G. Woodworth, M.D. Perry, Y.J. Chen, A.K. Kerman, Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus, Physical Review E 51 (1995) 4833-4843.
  • [6] J.J. Xu, Q. Kong, Z. Chen, P.X. Wang, D. Lin, Y.K. Ho, Vacuum laser acceleration in circularly polarized fields, Journal of Physics D: Applied Physics 40 (2007) 2464-2471.
  • [7] K.P. Singh, Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum, Physical Review E 69 (2004) 056410-1-056410-5.
  • [8] Y.I. Salamin, Single-electron dynamics in a tightly focused laser beat wave: acceleration in vacuum, Journal of Physics B: Atomic, Molecular and Optical Physics 38 (2005) 4095-4110.
  • [9] J. Fan, W. Luo, E. Fourkal, T. Lin, J. Li, I. Veltchev, C.-M. Ma, Shielding design for a laser- accelerated proton therapy system, Physics in Medicine and Biology 52 (2007) 3913-3930.
  • [10] M. Borghesi, J. Fuchs, O. Willi, Laser-accelerated high-energy ions: state of-the-art and applications, Journal of Physics: Conference Series 58 (2007) 74-80.
  • [11] Y.I. Salamin, Z. Harman, C.H. Keitel, Direct high-power laser acceleration of ions for medical applications, Physical Review Letters 100 (2008) 155004-155008.
  • [12] D.N. Gupta, H.J. Jang, H. Suk, Combined effect of tight-focusing and frequency-chirping on laser acceleration of an electron in vacuum, Journal of Applied Physics 105 (2009) 106110-1-06110-3.
  • [13] J.R. Harris, D. Blackfield, G.J. Caporaso, Y.-J. Chen, S. Hawkins, M. Kendig, B. Poole, D.M. Sanders, M. Krogh, J.E. Managan, Vacuum insulator development for the dielectric wall accelerator, Journal of Applied Physics 104 (2008) 023517-023517-4.
  • [14] A. Dubik, M.J. Małachowski, Basic features of a charged particle dynamics in a laser beam with static axial magnetic field, Opto-Electronics Review 17/4 (2009) 275-286.
  • [15] A. Dubik, M.J. Małachowski, Resonance acceleration of a charged particle in a laser beam and static magnetic field, Journal of Technical Physics 50/2 (2009) 75-98.
  • [16] Y.I. Salamin, F.H.M. Faisal, Ch.H. Keitel, Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance, Physical Review A 62 (2000) 053809-15.
  • [17] A. Dubik, Movement of charge particles in electromagnetic field, Monograph No 101, Published at Radom University of Technology, Radom, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0031-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.