PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and characterization of highly electrically and thermally conductive polymeric nanocomposites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The conducting polymers and polymeric composites have attracted considerable attention in recent years because of their potential applications in advanced technologies, for example, in antistatic coatings, electromagnetic shielding. Design/methodology/approach: In this study the conductive fillers were expanded graphite (EG) and untreated graphite (UG), the base material was ethylene- vinyl acetate copolymer (EVA). Nanocomposites containing up to 30 volume % of filler material were prepared by mixing them in a Brabender Plasticorder. Findings: The increase in thermal conductivity was more pronounced for EVA-UG nanocomposites than EVA-EG nanocomposites. Practical implications: The recent advancement of nano-scale compounding technique enables the preparation of highly electrically conductive polymeric nanocomposites with very low loading of conductive fillers. Compared with traditional composites, nanocomposites may offer enhanced physical features such as increased stiffness, strength, barrier properties and heat resistance, without loss of impact strength in a very broad range of common synthetic or natural polymers. Originality/value: The introduction of electrically conductive fillers such as graphite, carbon black, metal and metal oxide powders into the polymeric matrix is a promising approach to fabricate electrically conductive polymeric materials.
Rocznik
Strony
84--88
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] A. Celzard, G. Furdin, J. Mareche, E. McRae, Anisotropic Percolation in an Epoxy-Graphite Disc Composite, Solid State Communications 92/5 (1994) 377-383.
  • [2] G.H. Chen, D.J. Wu, W.G. Weng, Preparation of Polymer/ Graphite conducting Nanocomposite by Intercalation Polymerization, Journal of Applied Polymer Science 82 (2001) 2506-2513.
  • [3] K. Kalaitzidou, H. Fukushima, L. Drazal, Graphite Nanoplatelets as Nanoreinforcements for Polymers: Comparison between a Thermoset and a thermoplastic matrix, Proceedings of the 14th International Conference "Composite Materials" ICCM-14, San Diego, 2003, 541.
  • [4] Y. Kozima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O.J. Kamigaito, Mechanical Properties of Nylon-6 Clay Hybrid, Journal of Materials Research 8 (1993) 1185-1189.
  • [5] I. Krupa, A. Boudenne, L. Ibos, Thermophysical properties of polyethylene filled with metal coated polyamide particles, European Polymer Journal 43/6 (2007) 2443-2452.
  • [6] Y.X. Pan, Z. Yu, Y. Ou, G. Hu, A New Process of Fabricating Electrically Conducting Nylon 6/Graphite Nanocomposites Via Intercalation Polymerization, Journal of Polymer Science Part B: Polymer Physics 38 (2000) 1626-1633.
  • [7] A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fuku-shima, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6-clay hybrid, Journal of Materials Research 81 (1993) 1179-1184.
  • [8] Z. Wenge , L. Xuehong, W. Shing-Chung, Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene, Journal of Applied Polymer Science 91 (2004) 2781-2788.
  • [9] A. Yasmin, J. Luo, I.M. Daniel, Processing of Expanded Graphite Reinforced Polymer Nanocomposites, Composites Science and Technology 66/9 (2006) 1182-1189.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0031-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.