PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metallographic preparation of the conventional and new TBC layers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Verification of up-to-now used metallographic preparation of the TBC coating thermal barriers and adaptation of them to layers of new types, based on new ceramic compounds, sprayed on conventional high temperature creep resisting alloys by the APS method, is a purpose of this paper. New types of used ceramic powders are so called pyrochlores of a general formula RE₂Zr₂O₇. Design/methodology/approach: A scope of investigations comprised realization of a process of preparation of metallographic micro-sections, beginning from a cutting moment, through mounting, grinding and polishing. A standard method of preparation of micro-sections, typical for conventional layers was used and microstructural observation, from a point of view of presence of artefacts of mechanical origin was carried out. Findings: The carried out analysis allowed to compare methods of preparation of micro-sections and principles of preparation, used to assess the conventional TBC layers and relation them to barrier layers of new types. The carried out investigations showed that up-to-now used methods and procedures for the TBC layers, got by usage of conventional powders, are sufficient for layers of new types. Research limitations/implications: The carried out investigations suggest a necessity to verify the got results in a case of the TBC layers, sprayed by use of powders of pyrochlore structure of another type. Practical implications: The got results show a possibility to use up-to-now metallographic procedures for the TBC layers of new types. Originality/value: Information, concerning basic principles of microstructural assessment of layers of new types, sprayed by the APS method on high temperature creep resisting alloys, is an original value.
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
  • Department of Materials Science, The Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, grzegorz.moskal@polsl.pl
Bibliografia
  • [1] J.T. DeMasi-Marcin, D.K. Gupta, Protective coatings in the gas turbine engine, Surface and Coating Technology 68/69 (1994) 1-9.
  • [2] J. Wigren, L. Pejryd, Thermal barrier coatings-why, how, where and where to, thermal spray: meeting the challenges of the 21st century, in: C. Coddet (Ed.), Proceedings of the 15th International Thermal Spray Conference, ASM International, 1998, 1531-1542
  • [3] M. Konter, M. Thumann, Materials and manufacturing of advanced industrial gas turbine components, Journal of Materials Processing Technology 92-117 (2001) 386-390.
  • [4] D. Stover, C. Funke, Directions of the development of thermal barrier coatings in energy applications, Journal of Materials Processing Technology 92-93 (1999) 195-202.
  • [5] J.F. Li, H.L. Liao, C.X. Ding, C. Coddet, Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments, Journal of Materials Processing Technology 160 (2005) 34-42.
  • [6] Ashok Kumar Ray, Characterization of bond coat in a thermal barrier coated superalloy used in combustor liners of aero engines, Materials Characterization 57 (2006) 199-209.
  • [7] W.A. Nelson and R.M. Orenstein, TBC experience in land-based gas turbines, Journal of Thermal Spray Technology 6 (1997) 176-180.
  • [8] Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS., Mechanisms controlling the durability of thermal barrier coatings, Progress in Materials Science 46 (2001) 505-53.
  • [9] L. Swadźba, G. Moskal, B. Mendala, T. Gancarczyk, Characterization of APS TBC system during isothermal oxidation at 1100°C, Archives of Materials Science and Engineering 28/12 (2007) 757-764.
  • [10] G. Moskal, Effect of TBC on oxidation behaviour of ɣ-TiAl based alloy, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 31-34.
  • [11] G. Moskal, L. Swadźba, T. Rzychoń, Measurement of residual stress in plasma-sprayed TBC with a gradient of porosity and chemical composition, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 31-34.
  • [12] L. Swadźba, G. Moskal, B. Mendala, T. Gancarczyk, Characterization of air plasma sprayed TBC coating during isothermal oxidation at 1100ºC, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 81-84.
  • [13] L. Bjerregaard, K. Geels, B. Ottesen, M. Rückert, Metalog Guide, Struers A/S, Rodovre, Denmark, III eds, Metallografic Guide, Richard Larsen A/S, Denmark, 2001 (www.struers.com; www. prospecta.pl).
  • [14] D. Cebula, J. Widerman, Metallographic Investigations - preparation and observation methods, Office Gamma, Warsaw, 1999.
  • [15] Buehler’s Technical Information Guide & Preparation Methods, Buehler Ltd, Illinois, USA, (2000).
  • [16] J.P. Sauer, D.G. Puerta, G. Blann, Accepted practices of thermal spray technology, Journal of Thermal Spray Technology 14 (2005) 131.
  • [17] J.P. Sauer, D.G. Puerta, G. Blann, Accepted practices of thermal spray technology, Journal of Thermal Spray Technology 14 (2005) 450.
  • [18] J.P. Sauer, D.G. Puerta, G. Blann, Accepted practices of thermal spray technology, Journal of Thermal Spray Technology 15 (2006) 31.
  • [19] J.P. Sauer, D.G. Puerta, G. Blann, Accepted practices of thermal spray technology, Journal of Thermal Spray Technology 15 (2006) 174.
  • [20] K. Gels, The True Microstructure of Metals, Struers Journal of Metalography 35 (2000) 5-13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0030-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.