PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design, manufacture and technological verification of SiC/C composite stirrer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In article were presented assumptions and choose results of investigations connected with material selection and technology production of prototype's ceramic stirrer with destination to work in environment of liquid metal. In the research work the result of the design, manufacture and technological verification of SiC/C composite stirrer have been presented. Design/methodology/approach: The design of the stirrer (2D and 3D models) and strength tests on the blade and fragment of the composite axle was prepared in the programme Solid Works and the FEM, using COSMOS software. Polymer infiltration and pyrolysis (PIP) technique was used for fabrication SiC/C stirrer. Examination of wettability and suitability of the SiC/C composite for application in a liquid metal with sessile drop wettability was conducted. The surface geometry, conducted using a non-contact optical profilometer, FRT Micro'Prof. Findings: Further laboratory tests of the SiC/C composite stirrer, designed and developed in the Institute of Lightweight Engineering and Polymer Technology at TU Dresden have confirmed rightness of the design, assumptions regarding the thermal, mechanical and chemical resistance of the stirrer. Practical implications: The technological tests have proven a considerable reduction of the turbulence flow, which with an unchanged system of controlling the stirrer ensured stability of the liquid metal whirl and repeatability of the process. Originality/value: The application of this new material will enable not only the expansion of laboratory research, but it may also facilitate the implementation of liquid/phase technologies of obtaining MMC composites for the industry and thus, contribute to increasing the durability of stirrers in comparison with the solutions applied so far.
Rocznik
Strony
29--37
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
autor
autor
  • Department of Alloys and Composite Materials Technology, Faculty of Materials Science and Metallurgy, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, anna.dolata-grosz@polsl.pl
Bibliografia
  • [1] A. Dolata-Grosz, W. Hufenbach, J. Śleziona, A. Czulak, M. Gude, M. Dyzia, J. Wieczorek: Possibility of realization of CMC composite stirrer for suspension method obtaining MMC Composites 8/4 (2008) 429-431.
  • [2] A. Dolata-Grosz, W. Hufenbach, J. Śleziona, M. Gude, A. Czulak: Application of SiC/C composite stirrer in suspension mixing systems, Composites 9/4 (2009) 373-379.
  • [3] A. Mühlratzer, Production, Properties and Applications of Ceramic Matrix Composites, Deutsche Keramische Gesellschaft, 76/4 (1999) 30-35.
  • [4] H. Schneider, High Temperature Ceramic Matrix Composites. Wiley-VCH, Weinheim, Germany, 2001, 802-808.
  • [5] R. Kochend¨orfer, W. Krenkel, High-temperature ceramic- matrix composites I: Design durability and performance, Ceramic Transactions 57 (1995) 13-22.
  • [6] W. Krenkel, B. Heidenreich, R. Renz, C/C-SiC composites for advanced friction systems, Advanced Engineering Materials 4/8 (2002) 427-436.
  • [7] J. Hashim, L. Looney, M.S.J Hashmi: Metal matrix composites: production by the stir casting method, Journal of Materials Processing Technology 92-93 (1999) 1-7.
  • [8] M. Kok. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, Journal of Materials Processing Technology 161 (2005) 381-387.
  • [9] S. Naher, D. Brabazon, L. Looney, Simulation of the stir casting process, Journal of Materials Processing Technology 143-144 (2003) 567-571.
  • [10] W. Hufenbach, C. Weimann, H. Richter, A. Langkamp, T. Behnisch, Development of textile reinforced CMC lightweight modules for high performance automotive damping systems, Revue, Interceram 56/2 (2007) 92-97.
  • [11] F. Stręk, Mixing and mixers. WNT, Warsaw, 1981.
  • [12] W. Błażejewski, W. Hufenbach, A. Czulak, R. Böhm, Manufacture and test of composite tube specimens with braided glass fiber reinforcement, Composites 5/4 (2005) 67-71.
  • [13] G. Ziegler, I. Richter, D. Suttor, Fiber-reinforced composites with polymer-derived matrix: processing, matrix formation and properties, Composites Part A: Applied Science and Manufacturing 30/4 (1999) 411-417.
  • [14] G. Siwiec, J. Botor, The surface tension determination through the estimation of the parameters of the sessile drop equation, Archives of Metallurgy 48/2 (2003) 209-221.
  • [15] N. Sobczak, Wetting, structure and properties Al/Al2O3 interfaces, Composites 3 (2003) 7 301-312.
  • [16] A. Dolata-Grosz, M. Dyzia, J. Śleziona, Solidification analysis of AMMCs with ceramic particles, Archives of Materials Science and Engineering 28/7 (2007) 401-404.
  • [17] J. Myalski, J. Wieczorek, A. Dolata-Grosz, Tribological properties of heterophase composites with an aluminium matrix, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 53-57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0030-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.