PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The calculation of CCT diagrams for engineering steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to present numerical methods for calculation of CCT diagrams for engineering steels. Design/methodology/approach: The presented numerical methods for calculating the anisothermic diagrams of supercooled austenite are based on physical, statistical or artificial intelligence methods. In many cases input data are chemical composition and austenitising temperature. The results of calculations consist of temperature of the beginning and the end of particular transformation, the volume fraction of structural components and hardness of steel after heat treatment. Findings: Numerical methods are an alternative to experimental measurement in providing the material data required for heat treatment process simulation. Research limitations/implications: All presented methods for calculation of CCT diagrams for engineering steels are limited by ranges of mass concentrations of elements. Practical implications: All presented methods may be used in computer steel selection systems for machines parts manufactured from engineering steels subjected to heat treatment. Originality/value: The presented methods can be used for selecting steel with required structure after heat treatment. Keywords: Computational material science; Artificial intelligence methods; Neural networks; CCT diagrams
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] J.C, Zhao, M.R. Notis, Continuous cooling transformation kinetics versus isothermal transformation kinetics of steels: a phenomenological rationalization of experimental observations, Materials Science and Engineering R15 (1995) 135-207.
  • [2] M. Avrami, Kinetics of Phase Change. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei, Journal of Chemical Physics 8 (1940) 212-224.
  • [3] J. Johnson, R. Mehl, Reaction kinetics in processes of nucleation and growth, Trans AIMME 135 (1939) 416-458.
  • [4] D.P. Koistinen, R.E. Marburger, A general equation prescribing extent of austenite-martensite transformation in pure Fe-C alloys and plain carbon steels, Acta Metallurgica 7 (1959) 59-60.
  • [5] W.G. Vermulen, S. Van Der Zwaag, P. Morris, T. Weijer, Prediction of the continuous cooling transformation diagram of some selected steels using artificial neural networks, Steel Research 68 (1997) 72-79.
  • [6] J. Wang, P.J. Van Der Wolk, S. Van Der Zwaag, Effects of Carbon Concentration and Cooling Rate on Continuous Cooling Transformations Predicted by Artificial Neural Network, ISIJ International 39 (1999) 1038-1046.
  • [7] L.A. Dobrzański, J. Trzaska, Application of neural networks for prediction of hardness and volume fractions of structural components constructional steels cooled from the austenitising temperature, Materials Science Forum 437-438 (2003) 359-362.
  • [8] L.A. Dobrzański, J. Trzaska, Application of neural network for the prediction of continuous cooling transformation diagrams, Computational Materials Science 30 (2004) 251-259.
  • [9] L.A. Dobrzański, J. Trzaska, Application of neural networks for prediction of critical values of temperatures and time of the supercooled austenite transformations, Journal of Materials Processing Technology 155-156 (2004) 1950-1955
  • [10] L.A. Dobrzański, J. Trzaska, Application of neural networks to forecasting the CCT diagram, Journal of Materials Processing Technology 157-158 (2004) 107-113.
  • [11] J. Trzaska, L.A. Dobrzański, A. Jagiełło, Computer program for prediction steel parameters after heat treatment, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 171-174.
  • [12] Atlas of Continuous Cooling Diagrams for Vanadium Steels, Vanitec, Kent, 1985.
  • [13] F. Wever, A. Rose, W. Strassburg, Atlas zur Warmebehandlung der Stahle, Verlag Stahleisen, Dusseldorf 1954/56/58.
  • [14] P. Maynier, J. Dollet, P. Bastien, Prediction of microstructure via empirical formulae based on CCT diagrams, Hardenability Concepts With Applications to Steel, The Metallurgical Society of AIME (1978) 163-178.
  • [15] P. Maynier, B. Jungmann, J. Dollet, Creusot-Loire System for the prediction of the mechanical properties of low alloy steel products, Hardenability Concepts With Applications to Steel, The Metallurgical Society of AIME (1978) 518-545.
  • [16] R. Blondeau, P. Maynier, J. Dollet, Forecasting the hardness and resistance of carbon and low-alloy steels according to their structure and composition, Memoires Scientifiques de la Revue de Metallurgie 12 (1973) 883-892 (in French).
  • [17] R. Blondeau, P. Maynier, J. Dollet, B. Vieillard-Baron, Forecasting the hardness, resistance and breaking point of carbon and low-alloy steels according to their composition and heat treatment, Memoires Scientifiques de la Revue de Metallurgie 11 (1975) 759-769 (in French).
  • [18] N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schillé, Using JMatPro to Model Materials Properties and Behavior, JOM 55/12 (2003) 60-65.
  • [19] J.P. Schillé, G. Zhanli, N. Saunders, A P. Miodownik, R. Qin, Modeling Phase Transformations and Material Properties Critical to Processing Simulation of Steels, Thermomechanical Simulation and Processing of Steels, Simpro ’08, Allied Publishers Pvt. Ltd., Kolkata 2008, India, 62-71.
  • [20] X. Li, A.P. Miodownik, N. Saunders, J.P. Schillé Transformed-Software simplifies alloy heat treatment, production and design, Materials World 10/5 (2002) 21-24.
  • [21] E. Scheil, Anlaufzeit Der Austenitumwandlung, Archiv Eisenhuttenwes 8 (1935) 565-567.
  • [22] N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schille, The Calculation of TTT and CCT Diagrams for General Steels, Internal report, Sente Software Ltd., U.K. (2004).
  • [23] W. Zalecki, R. Kuziak., Z. Łapczyński, R. Molenda, V. Pidvysots’kyy, Experimental verification of possibilities of computer-based predictions of CCT diagrams using JmatPro software, Transactions of the Institute for Ferrous Metallurgy 58/1 (2006) 64-69.
  • [24] [http://calculations.ewi.org/vjp/secure/TTTCCTPlots.asp] EWI Virtual Joining Portal, TTT and CCT Diagram with Steel Composition, 2008.
  • [25] H.K.D.H. Bhadeshia, A thermodynamic analysis of isothermal transformation diagrams, Metal Science 16 (1982) 159-165.
  • [26] S.S. Babu, Acicular ferrite and bainite in Fe-Cr-C weld deposits. Ph.D Dissertation, University of Cambridge, Cambridge 1991.
  • [27] L.A. Dobrzański, S. Malara, J. Trzaska, Project of computer program for designing the steel with the assumed CCT diagram, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 351-354.
  • [28] L.A. Dobrzański, S. Malara, J. Trzaska, Project of neural network for steel grade selection with the assumed CCT diagram, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 155-158.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0030-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.