PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topological analysis and diagnosis of analog circuits

Autorzy
Identyfikatory
Warianty tytułu
PL
Topologiczna analiza i diagnostyka układów analogowych
Języki publikacji
EN
Abstrakty
EN
This work presents a comprehensive view of topological methods for analog electronic circuit analysis and diagnosis. It details a number of issues related to proper understanding and efficient use of topological methods, starting from graph representation of the network topology, topological formulas used in circuit analysis, hierarchical decomposition of topological representations, and related computational algorithms. It shows how to generate multiconnections and multitrees for various types of topological analyses of analog networks represented by their graphs. Other types of topological analyses are also discussed. These include high frequency interconnect and clock networks of modern integrated circuits, and large change sensitivity based diakoptics of large analog networks that use network topology to improve efficiency of sparse matrix analysis algorithms. Topological techniques in analog fault diagnosis are also discussed. Network decomposition is used to effectively locate faults within subnetworks of the tested network. Fault location under parameter tolerances and corresponding topological conditions are developed for nodal and multiport representations. Network topology is beneficial to a popular sensitivity based testing by simplifying the test matrix (Jacobian matrix of the network equations). Fault diagnosis based on verification of the test equations related to the network topology has been developed. This led to formulation of ambiguity groups in low testability circuits and an effective use of the network topology to test such circuits. Final sections of this work make an efficient use of the network topology and information theory to select an optimum set of test points needed in both fault dictionary and verification methods used in analog fault diagnosis. Topologiczna analiza i diagnostyka układów analogowych
PL
Praca przedstawia syntetyczny opis metod topologicznych stosowanych do analizy i diagnostyki elektronicznych układów analogowych. W sposób szczegółowy przedstawia zagadnienia związane z właściwym zrozumieniem i efektywnym wykorzystaniem metod topologicznych, poczynając od graficznej reprezentacji topologii układu, poprzez formuły topologiczne użyte do analizy układu i hierarchiczną dekompozycję reprezentacji topologicznych, do stowarzyszonych algorytmów obliczeniowych. Pokazuje jak generować wielo-połączenia i wielo-drzewa dla różnych typów analizy topologicznej układów analogowych reprezentowanych grafami. Dyskutowane są też inne rodzaje analizy topologicznej. Wchodzą w to takie metody jak analiza połączeń wysokiej częstotliwości i sieci zegara nowoczesnych układów scalonych, czy też diakoptyka dużych układów analogowych w oparciu o metodę wrażliwości wielkoprzyrostowej, w której topologia układu jest wykorzystana do zwiększenia wydajności algorytmów analizy macierzy rzadkich. Dyskutowane są też techniki topologiczne stosowane do diagnostyki układów analogowych. Dekompozycja układu użyta jest do efektywnej lokalizacji uszkodzeń wewnątrz podukładów układu testowanego. Lokalizacja uszkodzeń przy uwzględnieniu tolerancji parametrów, wraz z niezbędnymi warunkami topologicznymi, jest rozwinięta dla reprezentacji węzłowej i wielo-wrotnikowej. Topologia układu usprawnia, opartą na wrażliwościach, popularną metodę testowania poprzez uproszczenie macierzy testowej (macierz Jakobianu równań układu). Rozwinięta została diagnostyka uszkodzeń w oparciu o weryfikacje równań testowych odniesionych do topologii układu. Doprowadziło to do zdefiniowania grup wieloznacznych w układach o niskiej testowalności i efektywnego użycia topologii układu do testowania takich układów. Końcowe sekcje pracy w sposób efektywny wykorzystują topologie układu i teorię informacji do optymalnego wyboru punktów pomiarowych potrzebnych przy testowaniu układów analogowych metodami słownikowymi i weryfikacji.
Rocznik
Tom
Strony
3--141
Opis fizyczny
Bibliogr. 287 poz.
Twórcy
autor
Bibliografia
  • 1. Abderrahman A., Cerny E., Kaminska B.: Optimization-based multifrequency test generation for analog circuits, J. Electronic Testing: Theory Applicat., vol. 9. pp. 9-73, 1996.
  • 2. Acar C: New expansion for signal-flow-graph determinant, Electr. Letters, 1971.
  • 3. Ackland B.D., Clark R.A.: Event-EMU: An event driven timing Simulator for MOS VLSI circuits, Proc. IEEE Int. Conf. Comp. Aided Design, pp. 80-83, 1989.
  • 4. Alaybeyi, M.M. Lee, J.Y. Rohrer, R.A.: Numerical integration algorithms and asymptotic waveform evaluation(AWE), Proc. Int. Conf. Computer-Aided Design, ICCAD-92, pp. 76-79, Santa Clara, 1992.
  • 5. Alderson G.E., Lin P.M.: Computer generation of symbolic network functions - a new theory and implementation, IEEE Trans. on CT, vol. CT-20, no 1, 1973.
  • 6. Algorithm 459, The elementary circuits of a graph Comm. ACM 16, pp. 632-633,1973.
  • 7. Alippi C, Catelani M., Fort A.,Mugnaini M.: SBT soft fault diagnosis in analog electronic circuits: a sensitivity-based approach by randomized algorithms, IEEE Transactions on Instrumentation and Measurement, vol. 51, no 5, pp. 1116-1125, 2002.
  • 8. Amadori M., Guerrieri R., Malavasi E.: Symbolic analysis of simplified transfer functions, Kluwer J. Analog Integrated Circuits and Signal Process., vol. 3, no 1, pp. 9-29,1993.
  • 9. Bandler J.W., Biernacki R.M. and Salama A.E.: A linear programming approach to fault location in analog circuits, Proc. IEEE Int. Symp. Circuits and Systems (Chicago, IL), pp. 256-260,1981.
  • 10. Bandler J.W., Biernacki R.M., Starzyk J.A., Salama A.E.: Fault isolation in linear analog circuits, using the L1 norm, in Proc. IEEE Inc. Symp. Circuits and Systems (Rome, Italy 1982), pp. 1140-1143,1981.
  • 11. Bandler J.W., Salama A.E.: Fault diagnosis of analog circuits, Proc. IEEE, vol. 73, pp. 1279-1325, 1985.
  • 12. Bandler J.W., Zhang Q.J.: Large change sensitivity analysis in linear systems using generalized householder formulae, IEEE Trans. Circuit Theory and Applications, vol. 14, pp. 89-101,1986.
  • 13. Bellert S., Traczyk T.: Representation of rings of structural numbers, Demonstratio Mathematica, t. V, 1973.
  • 14. Bellert S., Wojciechowski J.: Grafy blokowe i liczby strukturalne drugiej kategorii, Prace naukowe P.W., Seria Elektronika, nrl, 1972.
  • 15. Bellert S., Wozniacki H.: Analiza i synteza układów elektrycznych metoda, liczb strukturalnych, WNT, Warszawa, 1968.
  • 16. Bellert S.: Topological analysis and synthesis of linear systems, Journal of the Franklin Inst., vol. 274,1962.
  • 17. Bellert S.: Topological considerations and synthesis of linear networks by means of the method of structural numbers, Arch. Elektr., t.XII, z.3, 1963.
  • 18. Berge C: Graphs and Hypergraphs, Amsterdam, North-Holland, 1973.
  • 19. Berkowitz R.S.: Conditions for network-element-value solvability, IEEE Trans. Circuit Theory, vol. CT-9, pp. 24-29,1962.
  • 20. Biernacki R.M. and Bandler J.W.: Multiple-fault location of analog circuits, IEEE Trans. Circuits Syst., vol. CAS-28, pp. 361-367,1981.
  • 21. Biernacki R.M. Starzyk J.A.: A test generation algorithm for parameter identification of analog circuits, Proc. European Conf. Circuit Theory and Design, The Hague. Netherlands, pp. 993-997,1981.
  • 22. Bowen M., Smith G.: Considerations for the design of smart sensors, Sensors and Actuators - A - Physical, vol. 47, Issue: 1/3, pp. 516-520,1995.
  • 23. Branin F.H.: A sparse matrix modification of Kron's method piecewise analysis, IEEE Int. Symp. on CAS, Newton, 1975.
  • 24. Braun J.: Analytical methods in active network theory. Acta Polytechnica - Prace CVUT v Praze. IV. I,1966.
  • 25. Braun J.: Topological analysis of networks containing nullators and norators, Electr. Lett., pp. 427,1966.
  • 26. Brownell R.A.: Growing the Trees of a graph, Proc. of IEEE vol. 56, pp. 1121-1123,1968.
  • 27. Brtkovic F., Vehovec M.: Matrix reduction method for solution of sparse circuit equations, Proc. IEEE Int. Symp. on CAS, pp.175-179,1978.
  • 28. Buchanan J.E.: BiCMOS/CMOS Systems Design, McGraw-Hill, New York, 1990.
  • 29. Cajka J.: New formula for the signal-flow graph reduction, Electr. Lett., pp. 437-438, July, 1970.
  • 30. Callier F.M., Chan W.S., Desoer C.A.: Input-output stability theory of interconnected systems using decomposition techniques, IEEE Trans. Circuits and Systems, vol. CAS-23, pp. 714-729,1976.
  • 31. Carlin H.J.: Singular network elements, IEEE Trans. Circuit Theory, 1964.
  • 32. Carmassi R., Catelani M., Iuculano G., Liberatore A., Manetti S., Marini M.: Analog network testability measurement: A symbolic formulation approach, IEEE Trans. Instrum. Meas., vol. 40, pp. 930-935,1991.
  • 33. Catelani M., Fedi G., Luchetta A., Manetti S., Marini M., Piccirilli M.C.: A new symbolic approach for testability measurement of analog networks , Proc. MELECON '96 , pp. 517-520, Bari, Italy, May 1996.
  • 34. Catelani M., Fort A.: Soft fault detection and isolation in analog circuits: some results and a comparison between a fuzzy approach and radial basis function networks, IEEE Transactions on Instrumentation and Measurement, vol. 51, no 2, pp. 196-202, 2002.
  • 35. Catelani M., Giraldi S.: A measurement system for fault detection and fault isolation of analog circuits, Measurement, vol. 25, Issue: 2, pp. 115-122, 1999.
  • 36. Catelani M., Iuculano G., Liberatore A., Manetti S., Marini M.: Improvements to numerical testability evaluation, IEEE Trans. Instrum. Meas., vol. IM-36, pp. 902-907, 1987.
  • 37. Centkowski G., Konczykowska A., Starzyk J., Śliwa E.: Modernizacja programu HADEN z uwzględnieniem analizy hierarchicznej wstępującej, analizy tolerancji z możliwością analizy układów z przełączanymi pojemnościami, Problem badań podstawowych nr 1.11.07.02,Warszawa, 1980.
  • 38. Centkowski G., Starzyk J., Śliwa E.: Computer implementation of topological method in the analysis of large networks, Proc. of the ECCTD Warszawa, 1980.
  • 39. Centkowski G., Starzyk J., Śliwa E.: Program analizy topologicznej dużych układów liniowych, Raport z problemu badan podstawowych nr 1.11.07.02, Warszawa, 1979.
  • 40. Centkowski G., Starzyk J., Śliwa E.: Symbolic analysis of large LLS networks by means of upward hierarchical analysis. ECCTD, The Hague, 1981.
  • 41. Chen C.T.: Introduction to linear systems theory, Holt, Rinehard and Winston 1970
  • 42. Chen H.M.S., Saeks R.: A search algorithm for the solution of multifrequency fault diagnosis equations, IEEE Trans. Circuits Syst., vol. CAS-26, pp. 589-594, 1979.
  • 43. Chen W.K: Flow graphs: some properties and methods of simplifications, IEEE Trans, on CT 1, pp. 128-130,1965.
  • 44. Chen W.K., Li H.C.: Computer generation of directed trees and complete trees, Int. J. Electronics, vol. 34, no 1, pp. 1-21,1973.
  • 45. Chen W.K.: Applied graph theory - graphs and electrical networks, North-Holland P.C, 1976.
  • 46. Chen W.K.: Characterizations of complete directed trees and two-trees, IEEE Trans, on Circuit Theory, vol. CT-19, no 3 pp. 241-247, 1972.
  • 47. Chen W.K.: On directed trees and directed k-trees of a digraph and their generation, SIAM J. Appl. Math. vol. 14, no 3,1966.
  • 48. Chen W.K.: Topological analysis for active networks, IEEE Trans. CT-12,1965.
  • 49. Chen W.K.: Unified theory on the generation of trees of a graph, Int. J. Electr., The Wang algebra formulation, vol.27 no 2, 1969, Part.II. The matrix formulation, vol.27 no 4, 1969, Part. III. Decomposition and elementary transformations, Vol.31, no 4, 1971.
  • 50. Cheng Y., Lin P.M.: Symbolic analysis of general switched capacitor networks- New methods and implementation, Proc. IEEE Int. Symp. Circuits Syst., pp. 55-59, 1987.
  • 51. Chow Y., Cassignol E.: Linear signal-flow graphs and applications, Wiley, New York 1962.
  • 52. Christian D., Hassan I.: A BIST-DFT technique for DC test of analog modules, Journal of Electronic Testing: Theory and Applications, vol. 9, Issue: 1/2, pp. 117-133, 1996.
  • 53. Christofides N.: Graph Theory - an algorithmic approach, Academic Press, 1975.
  • 54. Chu T.: Synthesis of Self-timed VLSI Circuits from Graph Theoretic Specifications, Technical Report: TR-393, Massachusetts Institute of Technology, 1987.
  • 55. Chua L.O., Chen L.K.: Diakoptic and generalized hybrid analysis, IEEE Trans, on CAS, vol.CAS-23, no 12, pp. 694-705,1976.
  • 56. Chua L.O., Lin P.M.: Computer aided analysis of electronic circuits-algorithms and computational techniques, Prentice-Hall Inc., 1975.
  • 57. Coates C.L.: Flow graph solutions of linear algebraic equations, IRE Trans. CT, pp. 170-187, 1959.
  • 58. Coates C.L.: General topological formulas for linear networks functions, IRE Trans. CT., vol. 5, 1958.
  • 59. Csiszar, I. Korner, J.: Graph decomposition: A new key to coding theorems, IEEE Transactions on Information Theory, vol. 27, no 1,1981.
  • 60. Dantzig G.B., Wolfe P.: The decomposition algorithm for linear programming, Econometria, vol. 29, no 4, pp. 767-778, 1961.
  • 61. Davies A.C.: Nullator-norator equivalent networks for controlled sources, Proc. IEEE, pp. 722-723, 1967.
  • 62. Davies A.C.: On matrix analysis of networks containing nullators and norators, Electronic Letters, pp. 48, 1966.
  • 63. Davies A.C.: Topological solutions of networks containing nullators and norators, Electr. Lett., pp. 90,1966.
  • 64. Deo N.: Graph theory with applications to engineering and computer sciences, Englewood Cliffs, NJ, Prentice-Hall, 1974.
  • 65. Deo N.: Teoria grafów i jej zastosowania w technice i informatyce, PWN, Warszawa, 1980.
  • 66. Desai M. P., Narayanan H., Patkar S.B.: The realization of finite state machines by decomposition and the principal lattice of partitions of a submodular function, Discrete Applied Mathematics, vol. 131, no 2, pp. 299-310, 2003.
  • 67. Dor D., Tarsi M.: Graph decomposition is NP-complete: A complete proof of Holyer's conjecture, SIAM Journal on Computing, vol. 26, no 4, pp. 1166-1187, 1997.
  • 68. Duffin R.J.: An analysis of Wang algebra of network, Trans. Am. Math. Soc, 1959.
  • 69. Duhamel P., Rault J.C.: Automatic test generation techniques for analog circuits and systems: A review, IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 411-440, 1979.
  • 70. Dunn W.R., Chan S.P.: Analysis of active networks by a subgraph-construction technique, Second Asilomar Conf. on CAS, 1968.
  • 71. Dunn W.R., Jr., Chan S.P.: Topological formulation of active network functions, IEEE Trans. Circuit Theory, vol. CT-13, pp. 554-557, 1971.
  • 72. Ehrenfeucht A., Harju T, Rozenberg G.: Gene assembly through cyclic graph decomposition, Theoretical Computer Science, vol. 281, no 1-2, pp. 325-349, Elsevier, 2002.
  • 73. Elmore W.C.: The transient response of dumped linear networks with particular regard to wide-band amplifiers, J. Appl. Phys., vol. 19, pp. 5563, 1948.
  • 74. Engel A.B., Młyński D.A.: Maximal partitioning of graphs, Proc. IEEE Int. Symp. on CAS, Tokyo, pp. 84-87,1979.
  • 75. Engel A.E., Młyński D.A.: Cliques and partition of graphs, Proc. IEEE Int. Symp. on CAS, pp. 81-82,1978.
  • 76. Fedi G., Giomi R., Luchetta A., Manetti S., Piccirilli M.: On the application of symbolic techniques to the multiple fault location in low testability analog circuits, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no 10, pp. 1383-1388, 1998.
  • 77. Fedi G., Manetti S., Piccirilli M., Starzyk J.: Determination of an optimum set of testable components in the fault diagnosis of analog linear circuits, IEEE Transactions on Circuit and Systems I: Fundamental Theory and Applications, vol. 46, no 7, pp. 779-787, 1999.
  • 78. Fedi G., Manetti S., Piccirilli M.C.: Comments on Linear circuit fault diagnosis using neuromorphic analyzers, IEEE Trans. Circuits Syst. II, vol. 46, pp. 483-485, 1999.
  • 79. Feng L., Zhenghui L., William L.T.: A uniform approach to mixed-signal circuit test, Int. Journal of Circuit Theory and Applications, vol. 25, Issue: 2, pp. 81 - 93, Mar./Apr. 1997.
  • 80. Fernandez F. V., Oscar Guerra O., Rodriguez-Garcia J. D., Rodriguez-Vazquez A.: Symbolic Analysis of Large Analog Integrated Circuits: The Numerical Reference Generation Problem, IEEE Trans, on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no 10, pp. 1351-1361, 1998.
  • 81. Ferrari D.: Improving locality by critical working sets, Comm. of ACM vol. 17 no 11, pp. 614-620, 1974.
  • 82. Filippetti F., Artioli M.: Cycling verify: fault diagnosis for linear analog circuits based on symbolic calculus and interval algebra, Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, vol. 1, pp. 589 -594,
  • 83. Fidler J.K., Sewell J.I.: Symbolic analysis for computer-aided design - The interpolative approach, IEEE Trans, on Circuit Theory, vol.CT. 20, pp.738-741, Nov. 1973.
  • 84. Fino M.H., Franca J.E., Steiger-Garcao A.: Automatic symbolic analysis of switched-capacitor filtering networks using signal flow graphs, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no 7, pp. 858-867, 1995.
  • 85. Frederickson G.N.: Planar graph decomposition and all pairs shortest paths Journal of the ACM, vol. 38, no 1, pp. 162-204, 1991.
  • 86. Fujiwara H.: Logic Testing and Design for Testability, MIT Press, Cambridge, MA, 1985.
  • 87. Gandhi B.R.M., Rao V.P., Raju G.S.: Passive and active circuit analysis by the method of structural numbers, Int. J. Electr., vol. 32, no 6, 1972.
  • 88. Gandhi B.R.M., Rao V.P.: Unistor graphs a systematic procedure for generation of directed trees and 2-trees, J.I.E. (India), vol. 50, no 8, 1970.
  • 89. Gibbs N.E.: A cycle generation algorithm for finite undirected linear graphs, Operat. Res. vol. 17, pp. 838- -847, 1969.
  • 90. Gielen G., Sansen W.: Symbolic Analysis for- Automated Design of Analog Integrated Circuits. Norwell, MA: Kluwer, 1991.
  • 91. Gielen G., Walscharts H., Sansen W.: ISAAC: A symbolic Simulator for analog integrated circuits, IEEE J. Solid-State Circuits, vol. 24, no. 6, pp. 1587-1597, 1989.
  • 92. Gielen G., Wambacq P., Sansen W.M.: Symbolic analysis methods and applications for analog circuits: a tutorial overview, Proceedings of the IEEE, vol. 82, no 2, pp. 287-304, 1994.
  • 93. Gorsztein L.L.: O Razbijenii grafów. Izw. AN SSSR - Techniczeskaia Kibernetika, no 1, pp. 98-101, 1969.
  • 94. Goto S., Sangiovanni-Vincentelli A.: A new decomposition algorithm for the shortest path problem, Proc. IEEE Int. Symp. on CAS, pp. 653-656, Tokyo, 1979
  • 95. Gower J.C.: Comparison of some methods of cluster analysis, Biometrics, vol. 54, pp. 623-637, 1967.
  • 96. Gross J.L., Yellen J.: Graph Theory and Its Applications, Chapman & Hall/CRC; 2 ed., Sept. 22, 2005.
  • 97. Guardabassi G., Sangiovanni-Vincentelli A.: A two levels algorithm for tearing, IEEE Trans. Circuits and Systems, vol. CAS-23, pp. 783-791, 1976.
  • 98. Gupta H., Bandler J.W., Starzyk J.A., Sharma J.: A Hierarchical Decomposition Approach for Network Analysis, Proc. IEEE Int. Symp. Circuits and Systems (Rome, 1982), pp. 643-646.
  • 99. Hajj I.N.: Sparsity considerations in network solution by tearing, IEEE Trans., CAS-27, pp. 357-366, 1980.
  • 100. Hakimi S.L., Green D.G.: Generation and realization of trees and k-trees, IEE Trans, on CT-11,1964.
  • 101. Haley S.B., Pham B.V.: Nonlinear system analysis: Computationally efficient modification algorithms, IEEE Trans., CAS-34, pp.639-649, 1987.
  • 102. Haley, S.B., Current, K.W.: Response change in linearized circuits and systems: Computational algorithms and applications, Proc. IEEE, 1985, vol. 73, pp. 5-24.
  • 103. Hankley WJ. and Merrill H.M.: A pattern recognition technique for system error analysis, IEEE Trans. Reliability, vol. R-20, pp. 148-153,1971.
  • 104. Happ H.H.: Diakoptics and networks, New York: Academic Press, 1971.
  • 105. Happ H.H.: Diakoptics - the solution of system problems by tearing, Proc. of IEEE vol.62, pp. 930-940, July 1974.
  • 106. Happ W.W.: Flowgraph Techniąues for Closed Systems, IEEE Trans. AES-2, no3, pp. 252-264, 1966.
  • 107. Harjani R.: Design mixed-signal ICs, IEEE spectrum, pp. 49-51, Nov. 1992.
  • 108. Hartmann C.R., Varshney P.K., Mehrotra K.G., Gerberich C: Application of information theory to the construction of efficient decision trees, IEEE Trans. Inform. Theory, vol. IT-28, pp. 565-576, 1982.
  • 109. Hashemian R.: Symbolic representation of network transfer functions using norator-nullator pairs, Electronic Circuits and Systems, vol. 1, no 6, pp. 193-197, 1977.
  • 110. Hassoun M.M., McCarville K.S.: Symbolic analysis of large-scale networks using a hierarchical signal flowgraph approach, "Analog Integrated Circuits and Signal Processing", Springer Netherlands, vol. 3, no 1, pp. 31-42, Jan. 1993.
  • 111. Hassoun M.M., Lin P.M.: A new network approach to symbolic simulation of large-scale networks, Proc. ISCAS, pp. 806-809, 1989.
  • 112. Ho J.K., Loute E.: An advanced implementation of the Dantzig-Wolfe decomposition algorithm for linear programming, Mathematical Programming vol. 20, pp. 303-326, 1981.
  • 113. Hochwald W. and Bastian J.D.: A dc approach for analog fault dictionary determination, IEEE Trans. Circuits Syst., vol. CAS-26, pp. 523-529, 1979.
  • 114. Hopcroft J.E., Tarjan R.E.: Dividing a graph into triconnected components, SIAM J. Comput., vol. 2, no 3, 1973.
  • 115. Hsu J.J., Sechen C: Fully symbolic analysis of large analog integrated circuits, Proc. of the 1994 Custom Integrated Circuits Conf., pp. 457-460, 1994.
  • 116. Hu T.C.: Integer programming and network flow Reading, MA, Addison-Wesley, 1969.
  • 117. Huang Z.F., Lin C.S., Liu R.W.: Topological conditions on multiple fault testability of analog circuits, Proc. IEEE Int. Symp. Circuits and Systems (Rome, Italy), pp. 1152-1155, 1982.
  • 118. Huelsman L.: Personal computer symbolic analysis programs for undergraduate engineering courses, Proc. ISCAS, pp. 798-801, 1989.
  • 119. Jony M.T., Zobrist G.W.: Topological formulas for general linear networks, IEEE Trans. Circuit Theory, vol. CT 15, pp. 251-259,1968.
  • 120. Katzenelson J., Tsur S.: On the symbolic analysis of linear networks, IEEE Trans, on CT, vol. CT-20, no 5, 1973.
  • 121. Kaufman I.: On poles and zeros of linear systems, IEEE Trans, on CAS, vol. 20, no 2, pp. 93-101, March 1973.
  • 122. Kernighas B.W., Lin S.: An efficient heuristic procedure for partitioning graphs, Bell System Tech. J., vol. 49, no 2, pp. 291-307, 1970.
  • 123. Kirchhoff G.: On the solution of the equations obtained from the investigation of the linear distribution of galvanic currents, IRE Trans. CT-5, 1958 (tłum pracy z 1947).
  • 124. Kishi, Kajitani: Topological considerations on minimal sets of variables describing an LCR network, IEEE Trans, on CT, 1973.
  • 125. Kitozawa H., Sagawa M.: P-parameter: a new representation of linear network functions and its application to network analysis, Proc. Int. Symp. CAS, pp. 1048-1051, Tokyo, 1979.
  • 126. Ko M-Y., Murthy P.K., Bhattacharyyal S.S.: Compact Procedural Implementation in DSP Software Synthesis through Recursive Graph Decomposition, "Software and Compilers for Embedded Systems", (Lecture Notes in Computer Science 3199), pp. 47-61, Springer Verlag 2004.
  • 127. Kobylarz T., Nadratowski J.: An algorithm for the generation of nonduplicate complete trees, Fifth Asilomar Conf. on CAS, Pacific Grove, Nov. 1971.
  • 128. Konczykowska A., Bon M.: Analog design optimization using symbolic approach, Proc. ISCAS, 1991, pp. 786-789, 1991.
  • 129. Konczykowska A., Bon M.: Automated design software for switched-capacitor IC's with symbolic Simulator SCYMBAL, Proc. DAC, pp. 363-368, 1988.
  • 130. Konczykowska A., Bon M.: Symbolic simulation for efficient repetitive analysis and artificial intelligence techniques in C.A.D., Proc. ISCAS, pp. 802-805, 1989.
  • 131. Konczykowska A., Bon M.: Topological analysis of switched-capacitor networks, Electr. Letters, vol. 16, pp. 89-90, 1980.
  • 132. Konczykowska A., Starzyk J.: Computer analysis of large signal flowgraphs by hierarchical decomposition method, Proc. of the ECCTD, Warszawa, 1980.
  • 133. Konczykowska A., Starzyk J.: Hierarchical decomposition of signal-flow graphs, III Int. Conf. on Electronic Circuits, Prague, 1979.
  • 134. Konczykowska A., Starzyk J.: Wyznaczanie liczby strukturalnej grafu zdekomponowanego, Czesc I i II, Arch. Elektrot., z.2, 1975.
  • 135. Konczykowska A.: Analiza układów elektrycznych z zastosowaniem metod dekompozycji, Praca doktorska, Warszawa, 1976.
  • 136. Konczykowska A.: Computer program of analysis of decomposed networks, Proc. of the ECCTD, Geneva, 1976.
  • 137. Kotkowski J.: Komputerowa analiza układów z przełączanymi pojemnościami, Praca dyplomowa, IPE, Politechnika, Warszawska, Warszawa, 1981.
  • 138. Kron G.: Diakoptics: the piecewise solution of large scale systems, London, Me Donald, 1963.
  • 139. Kuh B.S., Rohrer R.A.: The state-variable approach to network analysis, Proc. IEEE, vol. 53, no 3, pp. 672-686, July 1965.
  • 140. Li B., Gu D.: SSCNAP: A program for symbolic analysis of switched-capacitor circuits, IEEE Trans. Computer-Aided Design, vol. 11, pp. 334-340, 1992.
  • 141. Li F. and Woo P.: The invariance of node-voltage sensitivity sequence and its application in a unified fault detection dictionary method, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application, vol. 46, pp. 1222-1227, 1999.
  • 142. Liberatore A., Manetti S., Piccirilli M.C.: A new efficient method for analog circuit testability measurement, Proc. IEEE Instrumentation Measurement Technology Conf., pp. 193-196, Hamamatsu, Japan, May 1994.
  • 143. Lin P.: Symbolic Network Analysis, Elsevier, Amsterdam, The Netherlands, 1991.
  • 144. Lin P.M., Elcherif Y.S.: Analogue circuits fault dictionary - New approaches and implementation, Int. J. Circuit Theory Appl., vol. 13, pp. 149-172, 1985.
  • 145. Lin P.M.: A survey of applications of symbolic network functions, IEEE Trans, on CAS-20, pp. 732-737, 1973.
  • 146. Lin P.M.: Alderson G.E.: SNAP - A computer program for generating symbolic network functions, School Elec. Eng.Purdue Univ. Lafayette, Ind. Techn. Rep. TR-EE 70-16, Aug. 1970.
  • 147. Lin S., Kuh E.S.: Pade approximation applied to lossy transmission line circuit simulation, Proc. IEEE Int. Symp. Circuits and Syst. pp. 93-96, 1992.
  • 148. Liu D. and Starzyk J.A.: A generalized fault diagnosis in dynamic analogue circuits, International Journal of Circuit Theory and Applications, vol. 30, no 5, pp. 487-510, 2002.
  • 149. Liu R.W.: Testing and Diagnosis of Analog Circuits and Systems, Van Nostrand Reinhold, 1991.
  • 150. Lubaszewski M. Courtois B.: On the Design of Self-Checking Boundary Scannable Boards, Proc. Int. Test Conf., pp. 372-281, 1992.
  • 151. Luccio F., Sami M.: On the decomposition of networks in minimally interconnected subnetworks, IEEE Trans. Circuit Theory, vol. CT-16, pp. 184-183, 1969.
  • 152. Manetti S., Piccirilli M., Liberatore A.: Automatic test point selection for linear analog network fault diagnosis, in Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, pp. 25-28, 1990.
  • 153. Manetti S., Piccirilli M.: A singular-value decomposition approach for ambiguity group determination in analog circuits, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no 4, pp. 477-487, 2003.
  • 154. Manetti S.: New approaches to automatic symbolic analysis of electric circuits, Proc. Inst. Elec. Eng. part G, pp. 22-28, 1991.
  • 155. Mann H., Kvasil J.: An algorithm for the formulation of state-space equations, Proc. of ISCAS, pp.161-162, Tokyo, 1979.
  • 156. Marinov CA, Neittaanamaki P.: A theory of electrical circuits with resistively coupled distributed structures: Delay time predicting, IEEE Trans. Circuits and Systems, vol. CAS-35, pp. 173-183, 1988.
  • 157. Mason S.J.: Feedback theory - further properties of signal flow graphs, Proc. IRE, vol. 44 pp. 920-926, 1956.
  • 158. Mason S.J.: Feedback theory - some properties of signal flow graphs, Proc. IRE, vol. 41 pp. 1144-1156, 1953.
  • 159. Mason S.J.: Topological analysis of linear nonreciprocal networks, Proc. IRE, vol. 45, pp. 829-338, 1957.
  • 160. Mayeda W., Kanimi S.L., Chen W.K., Deo N.: Generation of complete trees, Trans. IEEE CT-15, no 2, 1968.
  • 161. Mayeda W., Seshu S.: Generation of trees without duplications, IEEE Trans. CT-12, 1965.
  • 162. Mayeda W.: Graph Theory, New York, Wiley-Interscience, 1972.
  • 163. Mayeda W.: Topological formulas for active net-world, Int. Tech. Rpt. Nr 8, U.S. Army Contract nr DA-11-022-ORO-1983, Univ. of Illinois, Jan. 1958.
  • 164. Maxwell L. M., Reed M.B.: The theory of graphs - a basic for network theory, Pergamon Press Inc. N.Y. 1971.
  • 165. Mc Ilroy M.D.: Algorithm 354: Generator of Spanning Trees, Comm. ACM, vol. 12, no 9, pp. 511, 1969.
  • 166. McCormick S.P., Allen J.: Waveform moment methods for improved interconnection analysis, Proc. 27th ACM/IEEE Design Autom. Conf., pp. 406-412, June 1990.
  • 167. Merrill H.M.: Failure diagnosis using quadratic programming, IEEE Trans. Reliability, vol. R-22, pp. 207-213, 1973.
  • 168. Mielke R.R.: A new signal flow graph formulation of symbolic network functions, IEEE Trans. CAS, vol. CAS-25, PP. 334-340, 1978.
  • 169. Minty G.J.: A simple algorithm for listing all the trees of a graph, IEEE Trans. CT, vol. CT-12, no 1, pp. 120,1965.
  • 170. Mulawka J.: Biwezlowe grafy Masona i ich zastosowanie do analizy i syntezy układów RC ze wzmacniaczami operacyjnymi, Rozprawa doktorska, Warszawa, 1976.
  • 171. Nadratowski J.: Analiza liniowych układów elektronicznych w oparciu o metody topologiczne i techniki maszynowego liczenia, Rozprawa doktorska, Warszawa, 1971.
  • 172. Narayanan H.: A Theorem on graphs and its application to network analysis, Proc. Int. Symp. Circuits and Systems, pp. 1007-1011, Tokyo, 1979.
  • 173. Nathan A.: Topological rules for linear networks, IEEE CT-12, no 3,1965.
  • 174. Newton A.R.: Techniques for the Simulation of Large-Scale Integrated Circuits, IEEE Transactions on CAS, vol. CAS-26 no 9, Sept. 1979.
  • 175. Nicholson H.: Structure of interconnected systems, Peter Peregrines LTD, 1978.
  • 176. Nievergelt J., Farrar J.C., Reingold E.M.: Informatyczne rozwiązywanie zadań matematycznych, WNT, Warszawa, 1978.
  • 177. Nitta T., Kishima A.: State equation of linear networks with dependent sources based on net topology, Trans. Electr. Commun. Japan, vol.160-A, pp. 1046-1053,1977.
  • 178. Numata J., Iri M.: Mixed-type topological formulas for general linear networks, IEEE Trans, on CT, vol. CT-20, no 5, 1973.
  • 179. O'Brian P.R., Savarino T.L.: Modeling of the driving-point characteristic of resistive interconnect for accurate delay estimation, Proc. IEEE Int. Conf Comp. Aided Design, pp. 512-515, Nov. 1989.
  • 180. Ogbuobiri E.C., Tinney W.F., Walker J.W.: Sparsity-directed decomposition for Gaussian elimination on matrices, IEEE Trans. Power, Appr. Syst, vol. PAS-89, pp. 141-150, 1970.
  • 181. Ozguner U.: Signal flow graph analysis using only loops, Electr. Letters, pp. 359-360,1973.
  • 182. Pang J., Starzyk J.A.: Fault Diagnosis in Mixed-Signal Low Testability System, An Int. Journal of Analog Integrated Circuits and Signal Processing, vol. 28, no 2, pp. 159-170, 2001.
  • 183. Paul A.J. Jr.: Generation of directed trees and 2-trees without duplication, IEEE Trans. CT-14, pp. 354, 1967.
  • 184. Pfannkoch T.A.: Advice 1N User's Giude, TM 52173, AT&T Bell Laboratories, April 1988.
  • 185. Pian L.: Linear active network theory, Prentice-Hall, 1962.
  • 186. Piekarski M.: Listing of all possible trees of a linear graph, IEEE Trans. CT, vol.CT-12,pp. 124,1965.
  • 187. Pillage L. T., Rohrer R. A. and Visweswariah C: Electronic and System Simulation Methods, McGraw-Hill, Inc., 1995.
  • 188. Pillage L.T., Rohrer R.A.: Asymptotic waveform evaluation for timing analysis, IEEE Trans. Computer-Aided Design. vol. 9, pp.: 352-366, 1990.
  • 189. Pillage L.T.: Asymptotic Waveform Evaluation for Timing Analysis, Res. Rept. CMUCAD-89-34, Carnegie-Mellon Univ., 1989.
  • 190. Pothen A., Simon H.D., Liou K-P.: Partitioning sparse matrices with eigenvectors of graphs, SIAM Journal on Matrix Analysis and Applications, vol. 11, no 3, pp. 430-452, 1990.
  • 191. Prasad V.C, Babu N.S.C.: Selection of test nodes for analog fault diagnosis in dictionary approach, IEEE Trans. Instrum. Meas., vol. 49, pp. 1289-1297, 2000.
  • 192. Prasad V.C, Pinjala S.N.R.: Fast algorithms for selection of test nodes of an analog circuit using a generalized fault dictionary approach, Circuits Syst. Signal Processing, vol. 14, no. 6, pp. 707-724, 1995.
  • 193. Rabat N.B., Hsieh H.Y.: A latent macro-modular approach to large-scale networks, IEEE Trans, on CAS, CAS-23, pp.745-752, Dec. 1976.
  • 194. Raghunatan A., Thompson C.D.: Signal delays in RC trees with charge sharing and leakage, Proc. 19th Assilomar Conf. Circuits, Systems and Computers, pp. 557-561, Nov. 1985.
  • 195. Ransom M.N. and Saeks R.: Fault isolation with insufficient measurements, IEEE Trans. Circuit Theory, vol. CT-20, pp. 416-417,1970.
  • 196. Riegle D.E., Lin P.M.: Matrix signal flow graphs and an optimum topological method for evaluating their gains, IEEE Trans. CT-19, pp. 427-435, 1972.
  • 197. Robotycki A., Zielonko R.: Fault diagnosis of analog piecewise linear circuits based on homotopy, IEEE Transactions on Instrumentation and Measurement, vol. 51, no 4, pp. 876-881, 2002.
  • 198. Roychowdhury J.S., Newton A.R., Pederson D.O.: An impulse response based linear time-complexity algorithm for lossy interconnect simulation, Proc. IEEE Int. Conf. Comp. Aided Design, pp. 62-65, Nov. 1991.
  • 199. Rutkowski J.: A dc approach for analog fault dictionary determination, Proc. European Conf. Circuit Theory and Design, pp. 877-880, 1993.
  • 200. Saeks R., Criteria for analog fault diagnosis, Proc. European Conf. Circuit Theory and Design (The Hague, Netherlands), pp. 75-78, 1981.
  • 201. Salama A.E., Starzyk J.A. Bandler J.W.: A Unified Decomposition Approach for Fault Location in Large Analog Circuits, IEEE Trans, on Circuits and Systems, vol. CAS-31,1984, pp.609-622.
  • 202. Sandberg I.W., So H.C.: A two-sets of eigenvalues approach to the computer analysis of linear systems, IEEE Trans. CT 16, pp. 509-517, 1969.
  • 203. Sangiovanni-Vincentelli A., Chen L.K., Chua L.O.: Node tearing nodal analysis, Electronics Research Laboratory, University of California, Berkeley, Memo ERL-M582, Sept. 1976.
  • 204. Sangiovanni-Vincentelli A., Chen L.K., Chua L.O.: An efficient heuristic cluster algorithm for tearing large - scale networks, IEEE Trans, on CAS, vol. CAS-24, no 12, 1977.
  • 205. Sannuti P., Puri N.N.: Generation of symbolic network-functions via exterior algebra, Proc. Int. Symp. on CAS, pp.190-194, New York, 1978.
  • 206. Sannuti P., Puri N.N.: Symbolic network analysis - an algebraic formulation, Proc. IEEE Int. Symp. on CAS, pp. 1044-1047, Tokyo, 1979.
  • 207. Sansen W., Gielen G., Walscharts H.: A symbolic Simulator for analog circuits, Proc. ISSCC, pp. 204-205, 1989.
  • 208. Seda S., Degrauwe M., Fichtner W.: A symbolic analysis tool for analog circuit design automation, Proc. ICCAD, pp. 488-491, 1988.
  • 209. Seda S., Degrauwe M., Fichtner W.: Lazy-expansion symbolic expression approximation in SYNAP, Proc. ICCAD, pp. 310-317, 1992.
  • 210. Sen N., Saeks R.: Fault diagnosis for linear systems via multifreauency measurement, IEEE Trans. Circuits Syst., vol. CAS-26, pp. 457-465, 1979.
  • 211. Seppänen J.J.: Algorithm 399, Spanning tree, Comm. ACM, vol. 13, pp. 621-622, 1970.
  • 212. Seshu S., Reed M.B.: Linear graphs and electrical networks, Addison-Wesley P.C., 1961.
  • 213. Shi C.-J.R., Tan X-D.: Canonical symbolic analysis of large analog circuits with determinant decision diagrams, IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no 1, pp. 1 - 18, 2000.
  • 214. Shiea S.D., Chan S.P.: Topological formulas of symbolic network functions for linear active networks, Proceedings ISCT, pp. 95-98, 1973.
  • 215. Singhal K., Vlach J.: Generation of immitance functions in symbolic form for lumped-distributed active networks, IEEE Trans, on CAS, vol. CAS-21, 1, 1974.
  • 216. Singhal K., Vlach J.: Symbolic analysis of analog and digital circuits, IEEE Trans. CAS, vol. CAS-24, pp.598-609, Nov. 1977.
  • 217. Śliwa E.: Analiza dużych sieci liniowych reprezentowanych grafem skierowanym, Praca dyplomowa, Politechnika Warszawska, IPE, Warszawa, 1979
  • 218. Sorensen E.V.: A linear semisymbolic circuit analysis program based on algebraic eigenvalue techniąue, Report. Techn. University of Denmark, Lyngbey 1972.
  • 219. Spaandonk J., Kevenaar T.: Iterative test-point selection for analog circuits, Proc. 14th VLSI Test Symp., pp. 66-71, 1996.
  • 220. Spina R., Upadhyaya S.: Linear circuit fault diagnosis using neuromorphic analyzers, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no 3, pp. 188-196,1997.
  • 221. Starzyk J.A., Konczykowska A.: Flowgraph Analysis of Large Electronic Networks, IEEE Trans, on CAS, vol. CAS-33, no 3, pp. 302-312, 1986.
  • 222. Starzyk J.A.: Hierarchical Analysis of High Frequency Interconnect Networks, IEEE Trans, on Computer Aided Design of Integrated Circuits and Systems, vol.13, no.5, 1994, pp. 658-664.
  • 223. Starzyk J.A., Śliwa E.: Hierarchic decomposition method for the topological analysis of electronic network, International Journal of Circuit Theory and Applications, vol. 8, pp. 407-417, 1980.
  • 224. Starzyk J.A., Śliwa E.: Topological analysis by hierarchic decomposition method, IV International Symposium on Network Theory, Ljubljana, 1979.
  • 225. Starzyk J.A.: An efficient cluster algorithm, Acta Polytechnica, 1981.
  • 226. Starzyk J.A.: Analiza topologiczna dużych układów elektronicznych, Prace Naukowe PW, Elektronika, z. 55,1981.
  • 227. Starzyk J.A.: Metody topologiczne analizy akladow skupionych liniowych i stacjonarnych z nulatorami i noratorami, Prace Naukowe PW, Elektronika, nr 20, 1975.
  • 228. Starzyk J.A.: Nowa metoda wyznaczania drzew całkowitych pary grafów sprzężonych, Arch. Elektrot. z.1, 1977.
  • 229. Starzyk J.A.: Opredelenie polnych derewiew nulatorno-noratornogo grafa, Radioelektronika, tom XX, z. 12, 1977.
  • 230. Starzyk J.A.: Signal flow-graph analysis by decomposition method, IEE Proceedings on Electronic CAS, no 2, 1980.
  • 231. Starzyk J.A.: The dispersor graphs, Proc. of 3-rd Czech-Polish Workshop on CT, Prenet, 1978.
  • 232. Starzyk J.A.: Wyznaczanie drzew całkowitych metoda zmodyfikowanej macierzy strukturalnej, Archiwum Elektrot. z.4,1978.
  • 233. Starzyk J.A. and Bandler J.W.: Location of fault regions in analog circuits, Faculty of Engineering, McMaster University, Hamilton, Canada, Rep. SOC-281,1981.
  • 234. Starzyk J.A. and Dai H.: Time Domain Testing of Large Nonlinear Circuits, Proc. European Conf. Circuit Theory and Design, (Brighton, United Kingdom), 1989.
  • 235. Starzyk J.A. El-Gamal M.A.: Topological conditions for element evaluation, 28th Midwest Symp. on Circuits and Systems Louisville Kentucky, 1985.
  • 236. Starzyk J.A., Bandler J.W.: Multiport Approach to Multiple-Fault Location in Analog Circuits, IEEE Trans, on Circuits and Systems, vol. CAS-30, pp.762-765, 1983.
  • 237. Starzyk J.A., Liu D.: A Decomposition Method for Analog Fault Location, IEEE Int. Symposium on Circuits and Systems, May 26-29, Scottsdale, Arizona, 2002.
  • 238. Starzyk J.A., Liu D.: Multiple Fault Diagnosis of Analog Circuits Based on Large Change Sensitivity Analysis, Proc. ECCTD, (Espoo, Finland), Aug. 2001.
  • 239. Starzyk J.A., Liu D.: Multiple-fault diagnosis of analog circuits by locating ambiguity groups of test equation, Proc. Int. Symp. of Circuits and Systems, May 2001.
  • 240. Starzyk J.A., Nelson D.E., Sturtz K.: A mathematical foundation for improved reduct generation in information systems, Knowledge Inform. Syst., vol. 2, no. 2, pp. 131-146, 2000.
  • 241. Starzyk J.A., Pang J., Manetti S., Fedi G., Piccirilli C: Finding Ambiguity Groups in Low Testability Analog Circuits, IEEE Trans. Circuits and Systems, Part I, vol. 47, no. 8, pp. 1125-1137, 2000.
  • 242. Starzyk J.A., Śliwa E.: Upward Topological Analysis of Large Circuits Using Directed Graph Representation, IEEE Trans, on Circuits and Systems, vol. CAS-31, pp. 410-414, 1984.
  • 243. Starzyk J.A.: Decomposition Approach to a VLSI Symbolic Layout with Mixed Constraints, Proc. IEEE Int. Symp. Circuits and Systems, pp. 457-460, Montreal, 1984.
  • 244. Starzyk J.A., Bandler J.W.: Nodal Approach to Multiple-Fault Location in Analog Circuits, Proc. IEEE Int. Symp. Circuits and Systems (Rome), pp. 1136-1139, 1982.
  • 245. Starzyk J.A., Dai H.: A Decomposition Approach for Testing Large Analog Networks, Journal of Electronic Testing - Theory and Applications, no.3, pp. 181-195, 1992.
  • 246. Starzyk J.A., Liu D., Liu Z-H., Nelson D., Rutkowski J.: Entropy-based optimum test points selection for analog fault dictionary techniques, IEEE Trans, on Instrum. and Measurement, vol. 53, no. 3, pp. 754-761, 2004.
  • 247. Starzyk J.A., Bandler J.W.: Design of Tests for Parameter Evaluation within Remote Inaccessible Faulty Subnetworks, Proc. IEEE Int. Symp. Circuits and Systems (Newport Beach, CA), pp. 1106-1109, 1983.
  • 248. Starzyk J.A., Biernacki R.M., Bandler J.W.: Evaluation of Faulty Elements within Linear Subnetworks, Int. Journal of Circuit Theory and Applications, vol. 12, pp. 23-37, 1984.
  • 249. Stenbakken G., Souders T., Stewart G.: Ambiguity groups and testability, IEEE Transactions on Instrumentation and Measurements, vol. 38, pp. 941-947, 1989.
  • 250. Stenbakken G.N., Souders T.M.: Test point selection and testability measure via QR factorization of linear models, IEEE Trans. Instrum. Meas., vol. EM-36, pp. 406-410,1987.
  • 251. Stenbakken G.N., Starzyk J.A.: Diakoptic and Large Change Sensitivity Analysis, IEE Proc. Part G, Circuits, Devices and Systems, vol. 139, no 1, pp. 114-118, 1992.
  • 252. Tadeusiewicz M., Halgas S., Korzybski M.: An algorithm for soft-fault diagnosis of linear and nonlinear circuits, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, no 11, pp. 1648-1653,2002.
  • 253. Tadeusiewicz M., Korzybski M.: A method for fault diagnosis in linear electronic circuits, International Journal of Circuit Theory and Applications, vol. 28, pp. 245-262, 2000.
  • 254. Talbot A.: Topological analysis for active networks, IEEE Trans. CT, vol. 13, 1966.
  • 255. Tan X-D., Shi C.-J.R.: Hierarchical symbolic analysis of analog integrated circuits via determinant decision diagrams, IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no 4, pp. 401 - 412, 2000.
  • 256. Thulasiraman k., Swamy M. N. S.: Graphs: Theory and Algorithms, Wiley-Interscience, 1992.
  • 257. Tiernan J.C.: An efficient search algorithm to find the elementary circuits of a graph, Comm. ACM, vol. 13, no 12, pp. 722-726, 1970.
  • 258. Ting S.L.: On the general properties of electrical network determinant, Chinese J.Phys., no 1, 1935.
  • 259. T. N. Trick and Y. Li, A sensitivity based algorithm for fault isolation in analog circuits, Proc. IEEE Int. Symp. Circuits and Systems (Newport Beach, CA), pp. 1098-1101,1983.
  • 260. Trick T.N., Mayeda W., Sakla AA.: Calculation of parameter values from node voltage measurements, IEEE Trans. Circuits Syst., vol. CAS-26, pp. 466-474, 1979.
  • 261. Tsai C.T.: Short cut methods for expanding the determinants involved in network problems, Chinese, J. Phys., no 3,1939.
  • 262. Varghese K.C., Williams J.H., Towill D.R.: Computer-aided feature selection for enhanced analog system fault location, Pattern Recognition, vol. 10, pp. 265-280,1978.
  • 263. Varghese K.C., Williams J.H., Towill D.R.: Simplified ATPG analog fault location via clustering and reparability techniąue, IEEE Trans. Circuits Syst., vol. CAS-26, pp. 496-505, 1979.
  • 264. Various papers: special issue on partial scan methods, Journal of Electronic Testing: Theory and Applications, vol. 7, Aug./Oct. 1995.
  • 265. Vinnakota B.: Analog and Mixed-Signal Test. Prentice Hall, 1998.
  • 266. Visvanathan V. and Sangiovanni-Vincentelli A.: Diagnosability of nonlinear circuits and systems-Part I: The dc-case, IEEE Trans. Circuits Syst., vol. CAS-28, pp. 1093-1102, 1981.
  • 267. Vlach J., Singhal K.: Computer Methods for Circuit Analysis and Design, Chapman & Hall, 1994.
  • 268. Vlach M.: LU decomposition and forward-backward substitution of recursive bordered block diagonal matrices, IEE proc. Part G, 132, (I). pp. 24-31,1985.
  • 269. Wambacq P., Dobrovolny, P., Gielen G.G.E., Sansen W.: Symbolic analysis of large analog circuits using a sensitivity-driven enumeration of common spanning trees, IEEE Trans, on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no 10, pp. 1342-1350, 1998.
  • 270. Wambacq P., Gielen G., Sansen W.M.: Symbolic simulation of harmonic distortion in analog integrated circuits with weak nonlinearities, Proc. ISCAS, pp. 536-539, 1990.
  • 271. Wambacq P., Gielen G.E., Sansen W.: Symbolic network analysis methods for practical analog integrated circuits: a survey, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no 10, pp. 1331-1341, 1998.
  • 272. Wang K.T.: On a new method for the analysis of electrical networks, Nat. Res. Inst. for Engineering, Academia Sinica Memoir, no 2, 1934.
  • 273. Wei T., Wong M.W.T., Lee Y.S.: Efficient multifrequency analysis of fault diagnosis in analog circuits based on large change sensitivity computation, Proceedings of the 5th Asian Test Symposium, pp. 232-237, 1996.
  • 274. Wierzba G. et al.: SSPICE-A symbolic SPICE program for linear active circuits, Proc. Midwest Symp. on Circuits and Systems, 1989.
  • 275. Winblatt H.A.: New search algorithm for finding the simple cycles of a finite directed graph, J. ACM, no 1, pp. 43-56,1972
  • 276. Winklestein D., Steer M.B., Pomerleau R.: Simulation of arbitrary transmission line network with nonlinear terminations, IEEE Trans. Circuits and Syst., vol. 38, pp. 418-421, 1991.
  • 277. Wojciechowski J.: Określanie liczby strukturalnej grafu blokowego metoda rozcięć, Arch. Elektrot. z.2, 1976.
  • 278. Worsman M., Wong M.W.T.: Non-linear analog circuit fault diagnosis with large change sensitivity, International Journal of Circuit Theory and Application, vol. 28, pp.281-303,2000.
  • 279. Worsman M., Wong M.W.T.: Nonlinear circuit fault diagnosis with large change sensitivity, IEEE Intl. Conference on Electronics, Circuits and Systems, vol.2, pp. 225-228, 1998.
  • 280. Wu C.-C, Nakajima K., Wey C.-L., Saeks R.: Analog fault diagnosis with failure bounds, IEEE Trans. Circuits Syst., vol. CAS-29, pp. 271-284, 1982.
  • 281. Wu F.: Solution of large-scale networks by tearing, IEEE Trans, on CAS, vol. CAS-23, no 12, pp. 706-713, 1976.
  • 282. Wu S. D., Byeon E-S., Storer R. H.: A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness Operations Research, vol. 47, no 1, pp. 113-124, 1999.
  • 283. Xie D.H., Nakhla M.: Delay and crosstalk simulation of high speed VLSI interconnects with nonlinear terminations, Proc. IEEE Int. Conf. Comp. Aided Design, pp. 66-69, Nov. 1991.
  • 284. Yu Q., Sechen C: A unified approach to the approximate symbolic analysis of large analog integrated circuits, IEEE Trans. Circuits Syst., vol. 43, pp. 656-669,1996.
  • 285. Yu Q., Sechen C: Efficient approximation of symbolic network functions using matroid intersection algorithms, IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no 10, pp. 1073 - 1081, 1997.
  • 286. Zemanian A.H.: Delay time bounds for on-chip and off-chip interconnection networks, Proc. IEEE Int. Symp. Circuits and Systems, pp. 2636-2637, Aug. 1990.
  • 287. Zwoliński, M., Nichols, K.G.: The design of a hierarchical circuit-level Simulator'. European Conference on Electronic Design Automation, University of Warwick, pp. 9-12, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0028-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.