PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

XPS and AES analysis of PVD coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The X-Ray Photoelectron Spectrometry (XPS) and Auger Electrons Spectroscopy (AES) analysis of PVD coatings were performed for samples, made from cemented carbides, cermets and composite gradient tool materials. Design/methodology/approach: The Ti(C,N) gradient coating was investigated by XPS and AES method with multifunctional PHI 5700/660 spectrometer. The characteristic of surface region coating were determined from XPS depth profile. The transition region between Ti(C,N) coating and substrate was analyzed by AES method as line profile. Findings: The coating consists mainly of TiC and TiN compound. The oxygen impurities of investigated coating is below 2%. The "fresh" surface of Ti(C,N) coating is covered by thin films TiO₂. There was observed homogeneous distribution of carbon, titanium and nitrogen elements in the surface region. The ratio of C/N obtained for surface region is characteristic for deposited coating. The transition region is also homogeneous between coating and cermet substrate. Practical implications: PVD deposition techniques making it possible to obtain surface layers with the varying thickness values, respectively, with the structure changing across the layer depth along with the change of its chemical or phase compositions for improvement of its properties, and especially for the advantageous combination of the very high abrasion wear resistance of the surface along with the relatively high ductility of the core of materials used for, respectively, blanking tools and for hot working, profile cutting tools with ductility high enough and for the heavy duty very high speed cutting tools. Originality/value: Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) are an excellent tools for performing surface analysis and for determining elemental composition as a function of depth. AES or XPS analyzes the residual surface left after a certain sputtering time with rare gas ions. In this way composition depth profiles can be obtained that provide a powerful means for analyzing worked layers, modified layers, thin films, multiple-layered coatings, lubricants, reaction film products, transferred films, and their interfaces.
Słowa kluczowe
EN
spectroscopy   XPS   AES   PVD  
PL
spektroskopia   XPS   AES   PVD  
Rocznik
Strony
99--102
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] L.A. Dobrzański J. Mikuła, K. Gołombek, Structural characteristic of the modern sintered tool materials, Materials Science Forum 530-531 (2006) 499-504.
  • [2] L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Improvement of tool materials by deposition of gradient and multilayers coatings, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 86-91.
  • [3] L.A. Dobrzański, K. Lukaszkowicz, J. Mikuła, D. Pakuła, Structure and corrosion resistance of gradient and multilayer coatings, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 75-78.
  • [4] P. Panjan, I. Boncina, J. Bevk, M. Cekada, PVD hard coatings applied for wear protection of drawing dies, Surface and Coating Technology 200 (2005) 133-136.
  • [5] L.A. Dobrzański, L. Wosińska, J. Mikuła, K. Gołombek, T. Gawarecki, Investigation of hard gradient PVD (Ti,Al,Si)N coating, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 59-62.
  • [6] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, T. Gawarecki, Hard gradient (Ti,Al,Si)N coating, International Journal of Materials and Product Technology (2007) (in print).
  • [7] M. Bizjak, A. Zalar, P. Panjan, B. Zorko, B. Pracek, Characterization of iron oxide layers using Auger electron spectroscopy, Applied Surface Science 253 (2007) 3977-3981.
  • [8] R. Kosiba, J. Liday, G. Ecke, O. Ambacher, J. Breza, P. Vogrincic, Quantitative Auger electron spectroscopy of SiC, Vacuum 80 (2006) 990-995.
  • [9] J. Kovac, M. Bizjak, B. Pracek, A. Zalar, Auger electron spectroscopy depth profiling of Fe-oxide layers on electromagnetic sheets prepared by low temperature oxidation, Applied Surface Science 253 (2007) 4132-4136.
  • [10] A.R. Chourasia, D.R. Chopra, Auger Electron Spectroscopy, Handbook of analytical chemistry, Prentice Hall, 1997.
  • [11] M.A. Baker, S.J. Greaves, E. Wendler, V. Fox, A comparison of in situ polishing and ion beam sputtering as surface preparation methods for XPS analysis of PVD coatings, Thin Solid Films 377-378 (2000) 473-477.
  • [12] K. Miyoshi, Surface Analysis and Tools, National Aeronautics and Space Administration Raport NASA TM-2002-211815, 2002.
  • [13] J.E. deVries, Surface characterization methods-XPS, TOF-SIMS, and SAM a complimentary ensemble of tools, Journal of Materials Engineering and Performance 7 (1998) 303-311.
  • [14] R.P. Netterfield, P.J. Martin, C.G. Pacey, W.G. Sainty, Ion-assisted deposition of mixed TiO2-SiO2 films, Journal of Applied Physics66 (1989) 1805-1809.
  • [15] J. Chastain, R.C. King, Jr, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0028-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.