Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: of this paper is to present the results of research programme on improve polymer materials properties by irradiation. This method can be helpful in improving some of mechanical properties and thermal stability of polymers. Design/methodology/approach: Radiation processing involves the use of natural or man-made sources of high energy radiation on an industrial scale. The principle of the radiation processing is the ability of the high energy radiation to produce reactive cations, anions, and free radicals in materials. The industrial application of the radiation processing of plastic and composites includes polymerization, cross-linking and grafting. Radiation processing involves mainly the use of either electron beams from electron accelerators or gamma radiation from Cobalt-60 sources. The big advantage of radiation processing is, that does not make the product radioactive. In this research programme, the properties of natural (not irradiated) and irradiated polypropylene (PP), both unfilled and filled with 25% of glass fibres, were compared. Flexural strength, tensile strength, impact strength, thermal stability and complex modulus E* were researched. The injection moulding machine DEMAG - EGROTECH 50 - 200 was used for sam preparation. Irradiation was carried out in the company BGS Beta Gamma Service GmbH Co, KG, Saal am Donau, Germany with the electron rays, electron energy 10 MeV, doses of 15 and 33 kGy. Findings: The most important results are the enormous improvement of the thermal stability and some mechanical properties of irradiated PP. Practical implications: From the practical point of view the most important is the enormous improvement of the thermal stability of irradiated PP. The majority of industrial applications of radiation processing are cross-linking of wire and cable insulations, tube, heat shrink cables, components of tires, composites, moulded products for automotive and electrical industry etc. Originality/value: It is necessary to use engineering polymers or even high performance polymers in some application. In many cases it would be possible to use standard or engineering polymers and to improve their properties, e.g. by irradiation.
Wydawca
Rocznik
Tom
Strony
69--76
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
autor
- Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, TGM 275, 762 72 Zlin, Czech Republic, dmanas@ft.utb.cz
Bibliografia
- [1] A. Zyball, Strahlungsenergie zur Modification von Kunststoffen-Industrielle Anwendungen der Bestrahlung-stechnik, In: Strahlenvernetzte Kunstoffe, Springer VDI Verlag, Dusseldorf, 2006.
- [2] J.G. Drobny, Radiation Technology for Polymers, CRC Press, Boca Raton, 2003.
- [3] U. Eichenauer, J. Ahlers, Polyaralsulfone, Kunststoffe 10 (1998) 140.
- [4] www.pts-marketing.de/51.0.html.
- [5] S. Shukushima, H. Hayami, Modification of radiation cross-linked polypropylene, Pergamon, Osaka R&D Laboratories, 2001.
- [6] Basell polyolefins company N.V., Technical manual, 2005.
- [7] R.S. Mellberg, Radiation processing, SRI International Research Report No. 618, 1978.
- [8] A. Chapiro, Radiation chemistry of polymeric system, Interscience Publisher, New York, 1962.
- [9] R.J. Crawford, Plastic Engineering, Third Edition, Butterworth-Heinemann, Oxford, 1998.
- [10] M. Dole, The radiation chemistry of macromolecules, Academic Press, New York and London, 1972.
- [11] E. Bociaga, T. Jaruga, Visualization of melt flow lines in injection moulding, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 331-334.
- [12] E. Bociaga, T. Jaruga, Experimental investigation of polymer flow in injenction mould, Archives of Materials Science and Engineering 28/3 (2007) 165-175.
- [13] M. Schatz, P. Vondracek, Testing of polymers, Vysoka skola chemicko-technologicka, Praha, 1979.
- [14] A. Dolata-Grosz, M. Dyzia, J. Leziona, Solidification andstructure of heterophase composite, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 103-106.
- [15] ČSN EN ISO 527-2, Plasty - Stanoveni tahovych vlastnosti: Zkusebni podminky pro tvarene plasty, ČNI, Praha, 1997.
- [16] ČSN EN ISO 178, Plasty - Stanoveni ohybovych vlastnosti, ČNI, Praha, 2003.
- [17] ČSN EN ISO 179/1e, Plasty - Stanoveni razove houzevnatosti metodou Charpy, ČNI, Praha, 1998.
- [18] ČSN EN ISO 11357-1, Plasty - Diferencni scanovaci kalorimetrie (DSC) - Cast 1: Zakladni principy, ČNI, Praha, 1998.
- [19] ČSN EN ISO 4664-1, Plasty - Stanovení dynamickych vlastnosti - Cast 1: Obecné pokyny, ČNI, Praha, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0028-0041