PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear strain localisation and fracture in high strength structural materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this paper is to investigate the factors variables influencing the plastic deformation and failure in some high strength metallic materials under high velocity impact. Design/methodology/approach: The materials were tested in compression at strain rates ranging between 10³ and 10⁴ s-¹ using direct impact Hopkinson Pressure Bar. Microstructural evaluation before and after mechanical loading at high strain rates was carried out to determine the mechanisms of plastic deformation and failure of the materials under study at high strain rates. Findings: Plastic deformation in the materials is dominated by shear strain localization along adiabatic shear bands (ASBs). Cracks are initiated and propagated along these bands leading to failure. Occurrence of adiabatic shear bands and cracking tendency of these bands are significantly influenced by strength and microstructure. Whereas homogeneous materials show the least tendency for shear strain localization and adiabatic shear failure, the presence of hard precipitates or secondary phase particles promotes the occurrence of adiabatic shear bands. Other variables such as strain and strain rate also show considerable influence on shear strain localization and susceptibility of a material to adiabatic shear failure. Research limitations/implications: The results of these investigation provides an understanding of how various microstructural variables can influence adiabatic shear failure in metallic materials and are significant in enhancing a more efficient material design for use in high strain-rate related applications. Practical implications: This research is particularly significant in military applications where these materials are used as armour plates and can be subjected to extremely rapid loading condition as in ballistic impact or explosion fragmentation. Originality/value: Results of these investigations offers a qualitative model for predicting the conditions which promote occurrence of ASBs in metallic materials.
Rocznik
Strony
69--74
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
  • Department of Mechanical and Manufacturing Engineering University of Manitoba Winnipeg, Manitoba, R3T 5V6, Canada, bassim@cc.umanitoba.ca
Bibliografia
  • [1] A.G. Odeshi. A.G.S. Al-ameeri, M.N. Bassim, Effect of high strain rate on plastic deformation of a low alloy steel subjected to ballistic impact, Journal of Materials Processing Technology 162-163 (2005) 385-391.
  • [2] T.W Wright, J.W. Walter, On stress collapse in adiabatic shear bands, Journal of Mechanics and physics of Solids 35 (1987) 701-720.
  • [3] L. Daridon, Oussouaddi, S. Ahzi, Influence of the material constituitive models on the adiabatic shear band spacing: MTS, power law and Johnston-Cook models, International Journal of Solids and Structures 41 (2004) 3109-3124.
  • [4] A.-S. Bonnet-Lebouvier, A. Molinari, P. Lipinski, Analysis of the dynamic propagation of adiabatic shear bands, International Journal of Solids and Structures 39 (2002) 4249-4269.
  • [5] J. Barry, G. Byrne, TEM study on the surface white layer in two turned hardened steels, Materials Science Engineering A 325 (2002) 356-364.
  • [6] M.A. Meyers, G. Subhashb, B.K. Kada, L. Prasada, Evolution of microstructure and shear-band formation in α-hcp titanium, Mechanics of Materials 17 (1994) 175-193.
  • [7] B.K. Kada, J.-M. Gebertb, M.T. Perez-Pradoc, M.E. Kassnerd, M.A. Meyers, Ultrafine-grain-sized zirconium by dynamic deformation, Acta Materialia 54 (2006) 4111-4127.
  • [8] D. R. Chichili, K.T. Ramesh, K.J. Hemker, Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution, Journal of Mechanic Physics Solids 52 (2004) 1889-1909.
  • [9] A.G. Odeshi, M.N. Bassim, S. Al-ameeri, Effect of heat treatment on adiabatic shear bands in a high-strength low alloy steel, Materials Science Engineering A 419 (2006) 69-75.
  • [10] A.G. Odeshi, M.N. Bassim, Evolution of adiabatic shear bands in a dual phase steel at high strain rates, Materials Science Engineering A (2007) (in Press).
  • [11] G.M. Owolabi, A.G. Odeshi, M.N.K. Singh and M.N. Bassim, Dynamic shear band formation in Aluminum 6061-T6 and Aluminum 6061-T6/Al2O3 composites, Materials Science Engineering A457 (2007) 114-119.
  • [12] V.F. Nesterenko, M.A. Meyers, T.W. Wright, Self organization in the initiation of adiabatic shear bands, Acta Materialia 46 (1998) 327-34.
  • [13] D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta Metallurgica 31 (1984) 1951-1976.
  • [14] R.W. Armstrong, W Arnold, F.J. Zerilli, Dislocation mechanics of shock induced plasticity, Metals and Materials Transactions A38 (2007) 2605-2610.
  • [15] R.W. Armstrong and F.J. Zerilli, Dislocation mechanics aspects of plastic instability and shear banding, Mechanics of Materials 17 (1994) 319-327.
  • [16] M.A. Meyers, V.F Nesterenko, J.C. LaSalvia, M.P. Bondar, Y.J. Chen, Y.L. Lukyanov, Materials Science Engineering A 229 (1997) 23-41.
  • [17] X.W. Chen, Q.M. Li, S.C. Fan, Initiation of adiabatic shear failure in a clamped circular plate struck by a blunt (2005) 877-893. projectile, International Journal of Impact Engineering 31
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0028-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.