PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feed forward neural network and interpolation function models to predict the soil and subsurface sediments distribution in Bam, Iran

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An application of the artificial neural network (ANN) approach for predicting mean grain size using electric resistivity data from Bam city is presented. A feed forward back propagation network was developed employing 45 sets of input data. The input variables in the ANN model are the electrical resistivity, water table as a Boolean value and depth; the output is the mean grain size. To demonstrate the authenticity of this approach, the network predictions are compared with those from interpolation methods and the same data. This comparison shows that the ANN approach performs better results. The predicted and observed mean grain size values were compared and show high correlation coefficients. The ANN approach maps show a high degree of correlation with well data based grain size maps and can therefore be used conservatively to better understand the influence of input parameters on sedimentological predictions.
Czasopismo
Rocznik
Strony
271--293
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • 1. Agrawal, G., J.D. Frost, and J.L.A. Chameau (1994), Data analysis and modeling using artificial neural network. In: 13th International Conference of Soil Mechanics and Foundation Engineering, Oxford and IBH Publishing, New Delhi, 1441-1444.
  • 2. Amegashie, F., J.Q. Shang, E.K. Yanful, W. Ding, and S. Al-Martini (2006), Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil, Can. Geotech. J. 43, 100-109, DOI: 10.1139/T05-085.
  • 3. Assimaki, D., J. Steidl, and P.Ch. Liu (2006), Attenuation and velocity structure for site response analyses via downhole seismogram inversion, J. Pure Appl. Geophys. 163, 1, 81-118, DOI: 10.1007/s00024-005-0009-7.
  • 4. Baldwin, J.L., D.N. Otte, and R.M. Bateman (1989), Computer emulation of human mental processes: application of neural network simulators to problems in well log pattern recognition. Proc. Soc. Petroleum Engineers, 64th ANN. Fall Meet. 481-493.
  • 5. Bauer, E., W. Huang, and W. Wu (2004), Investigations of shear banding in an anisotropic hypoplastic material, Int. J. Solids Struct. 41, 21, 5903-5919, DOI: 10.1016/j.ijsolstr.2004.05.052.
  • 6. Baum, E.B., and D. Haussler (1989), What size net gives valid generalization?, Neural Computation 1, 1, 151-160 (MIT), DOI: 10.1162/neco.1989.1.1.151.
  • 7. BHRC (2005), Seismic microzonation project for Bam city, Building and Housing Research Center, Iran, Report TN-101547-1.
  • 8. Chalov, R.S. (2001), Intricately braided river channels of lowland rivers: formation conditions, morphology, and deformation, Water Resources 28, 2, 145-150, DOI: 10.1023/A:1010319415169.
  • 9. Chattopadhyay, S. (2007), Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India, Acta Geophys. 55, 3, 369-382, DOI: 10.2478/s11600-007-0020-8.
  • 10. Chen, K., C. Jacobson, and R. Blong (2004), Artificial neural networks for risk decision support in natural hazards; A case study of assessing the probability of house survival from bushfires, J. Environ. Mod. Ass. 9, 3, 189-199, DOI: 10.1023/B:ENMO.0000049389.16864.b0.
  • 11. Das, S.K., and P.K. Basudhar (2004), Site characterization of an alluvial site using artificial neural network, International Workshop on Risk Assessment in Site Characterization and Geotechnical Design, Banglore.
  • 12. Foufoula-Georgiou, E., and V. Sapozhnikov (2001), Scale invariances in the morphology and evolution of braided rivers, Math. Geol. 33, 273-291, DOI: 10.1023/A:1007682005786.
  • 13. Fausett, F. (1994), Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Prentice-Hall, Englewood Cliffs, NJ.
  • 14. Finol, J., Y.K. Guo, and X.D. Jing (2001), A rule based fuzzy model for the prediction of petrophysical rock parameters, J. Pet. Sci. Eng. 29, 97-113, DOI: 10.1016/S0920-4105(00)00096-6.
  • 15. Folk, R.L. (1966), A review of grain-size parameters, Sedimentology 6, 2, 73-93, DOI: 10.1111/j.1365-3091.1966.tb01572.x.
  • 16. Gardner, M.W., and S.R. Dorling (1998), Artificial neural network (multilayer perceptron) - a review of applications in atmospheric sciences, Atmos. Environ. 32, 2627-2636, DOI: 10.1016/S1352-2310(97)00447-0.
  • 17. Gevrey, M., I. Dimopoulos, and S. Lek (2003), Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecological Modelling 160, 3, 249-264, DOI: 10.1016/S0304-3800(02)00257-0.
  • 18. Goh, A.T.C. (1995), Modeling soil correlations using neural networks, J. Comp. In Civ. Engrg. 9, 4, 275-278, DOI: 10.1061/(ASCE)0887-3801(1995)9:4(275).
  • 19. Goh, A.T.C., K.S. Wong, and B.B. Broms (1995), Estimation of lateral wall movements in braced excavations using neural networks, Can. Geotech. J. 32, 6, 1059-1064.
  • 20. Gokceoglu, C. (2002), A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition, Eng. Geol. 66, 1-2, 39-51, DOI: 10.1016/S0013-7952(02)00023-6.
  • 21. Grima, M.A., and R. Babuska (1999), Fuzzy model for the prediction of unconfined compressive strength of rock samples, Int. J. Rock. Mech. Min. Sci. 36, 3, 339-349.
  • 22. Hagan, M.T., H.B. Demuth, and M. Beale (2002), Neural Network Design, Thomson Learning, Singapore.
  • 23. Haykin, S. (1998), Neural Networks. A Comprehensive Foundation, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.
  • 24. Hecht-Nielsen, R. (1987), Kolmogorov's Mapping Neural Network Existence Theorem, Proceedings of the International Conference on Neural Networks, Part III, IEEE Press, New York.
  • 25. Hecht-Nielsen, R. (1990), Neurocomputing, Addison-Wesley, Reading, MA.
  • 26. Hornik, K. (1991), Approximation capabilities of multilayer feedforward networks, Neural Networks 4, 251-257, DOI: 10.1016/0893-6080(91)90009-T.
  • 27. Hornik, K. (1993), Some new results on neural network approximation, Neural Networks 6, 1069-1072.
  • 28. Hornik, K., M. Stinchcombe, and H. White (1989), Mulitilayer feedforward networks are universal approximators, Neural Networks 2, 359-366, DOI: 10.1016/0893-6080(89)90020-8.
  • 29. Hsieh, W.W., and T. Tang (1998), Applying neural network models to prediction and data analysis in meteorology and oceanography, Bull. Am. Meteor. Soc. 79, 1855-1869, DOI: 10.1175/1520-0477(1998)079<1855:ANNMTP>2.0.CO;2.
  • 30. Itani, O.M., and Y.M. Najjar (2000), Three-dimensional modeling of spatial soil properties via artificial neural network, Transport Res. Rec. 1709, 50-59, DOI: 10.3141/1709-07.
  • 31. Juang, C.H., and C.J. Chen (1999), CPT-based liquefaction evaluation using Artificial Neural Networks, Comput.-Aided Civ. Inf. Eng. 14, 221-229, DOI: 10.1111/0885-9507.00143.
  • 32. Juang, C.H., C.J. Chen, and Y.-M. Tieb (1999), Appraising cone penetration test based liquefaction resistance methods: artificial neural network approach, Can. Geotech. J. 36, 3, 443- 454, DOI: 10.1139/cgj-36-3-443.
  • 33. Juang, C.H., T. Jiang, and R.A. Christopher (2001), Three-dimensional site characterizations: neural network approach, Geotechnique 51, 9, 799-809, DOI: 10.1680/geot.51.9.799.41033.
  • 34. Kartalopoulos, S.V. (1996), Understanding Neural Networks and Fuzzy Logic - Basic Concepts and Applications, Prentice Hall, New Delhi.
  • 35. Kelly, W.E., and M. Stanislav (1993), Applied Geophysics in Hydrogeological and Engineering Practice, Elsevier, Amsterdam.
  • 36. Kurkova, V. (1992), Kolmogorov's Theorem and Multilayer Neural Networks, Neural Networks 5, 501-506.
  • 37. Lee, I.M., and J.H. Lee (1996), Prediction of pile bearing capacity using artificial neural networks, Comput. Geotech. 18, 3, 189-200, DOI: 10.1016/0266-352X(95)00027-8.
  • 38. Lesmes, D.P., and S.P. Friedman (2005), Relationships between the electrical and hydrogeological properties of rocks and soils. In: Y. Rubin and S.S. Hubbard (eds.), Hydrogeophysics 87-128, DOI: 10.1007/1-4020-3102-5_4.
  • 39. Lewis, D.W., and D. McConchie (1994), Analytical Sedimentology, Chapman and Hall, London, 260.
  • 40. Luthi, S.M., and I.D. Bryant (1997), Well-log correlation using a back-propagation neural network, Math. Geology 29, 3, 413-425, DOI: 10.1007/BF02769643.
  • 41. Nadim, F., M. Moghtaderi-Zadeh, C. Lindholm, A. Andresen, S. Remseth, M.J. Bolourchi, M. Mokhtari, and E. Tvedt (2004), The Bam earthquake of 26 December 2003, Bull. Earthq. Eng. 2, 119-153, DOI: 10.1007/s10518-004-2286-4
  • 42. Nagendra, S.M.S., and M. Khare (2006), Artificial neural network approach for modelling nitrogendioxide dispersion from vehicular exhaust emissions, Ecol. Model. 190, 99-115, DOI: 10.1016/j.ecolmodel.2005.01.062.
  • 43. Neaupane, K.M., and S.H. Achet (2004), Use of back propagation neural network for landslide monitoring: a case study in the higher Himalaya, Eng. Geol. 74, 213-226, DOI: 10.1016/j.enggeo.2004.03.010.
  • 44. Nelson, P.H. (1994), Permeability-porosity relationships in sedimentary rocks, The Log Analyst 35, 38-61.
  • 45. Ni, S.H., P.C. Lu, and C.H. Juang (1995), A fuzzy neural network approach to evaluation of slope failure potential, Microcomputers in Civil Eng. 11, 59-66.
  • 46. Price, J.R., and M.H. Hayes (1998), Resampling and reconstruction with fractal interpolation functions, IEEE Signal Proc. Lett. 5, 9, 228-230, DOI: 10.1109/97.712106.
  • 47. Rogers, S.J., J.H. Fang, C.L. Karr, and D.A. Stanley (1992), Determination of lithology from well logs using a neural network, Am. Assoc. Pet. Geol. Bull. 76, 5, 731-39.
  • 48. Rumelhart, D.D., G.E. Hinton, and R.J. Williams (1986a), Learning internal representations by error propagation. In: D.E. Rumelhart, J. McClelland, and P.D.P. Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: MIT Press, Cambridge, MA, 318-362.
  • 49. Rumelhart, D.E., G.E. Hinton, and J.L. McClelland (1986b), A general framework for parallel distributed processing. In: D.E. Rumelhart, J. McClelland, and P.D.P. Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: MIT Press, Cambridge, MA, 45-76.
  • 50. Shahin, M.A., M.B. Jaksa, and H.R. Maier (2001), Artificial neural network applications in geotechnical Engineering, Australian Geomechanics 36, 1, 49-62.
  • 51. Singh, U.K., R.K. Tiwari, and S.B. Singh (2004), One-dimensional inversion of geoelectrical resistivity sounding data using artificial neural networks- a case study, Computers and Geosciences 31, 1, 99-108, DOI: org/10.1016/j.cageo.2004.09.014.
  • 52. Smith, M., N. Carmichael, I. Reid, and C. Bruce (1991), Lithofacies determination from wireline log data using a distributed neural network, Edinburgh Parallel Computing Centre, Report 91-10, unpaginated.
  • 53. Talebian, M., E.J. Fielding, G.J. Funning, M. Ghorashi, J. Jackson, H. Nazari, B. Parsons, K. Priestly, P.A. Rosen, R. Walker, and J. Wright (2004), The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault, Geophys. Res. Lett . 31, L11611, DOI: 10.1029/2004GL020058.
  • 54. Tejchman, J., E. Bauer, and S.F. Tantono (2007), Influence of initial density of cohesion less soil on evolution of passive earth pressure, Acta Geotech. 2, 53-63, DOI: 10.1007/s11440-007-0022-3.
  • 55. Toll, D.G. (1996), Artificial intelligence applications in geotechnical engineering, Electronic Journal of Geotechnical Engineering 1, http://www.ejge.com/1996/Ppr9608/Ppr9608.htm.
  • 56. Wiener, J.M., J.A. Rogers, and R.F. Moll (1995), Predict permeability from wire line logs using neural networks, Petroleum Eng. Int. 67, 5, 18-24.
  • 57. Yilmaz, I., and A.G. Yuksek (2007), An example of artificial neural network (ANN) application for indirect estimation of rock parameters, Rock Mech. Rock Eng. 41, 5, 781-795, DOI 10.1007/s00603-007-0138-7.
  • 58. Yukselen, Y., and Y. Erzin (2007), Artificial neural networks approach for zeta potential of Montmorillonite in the presence of different cations, Environ. Geol. 54, 5, 1059-1066, DOI: 10.1007/s00254-007-0872-x.
  • 59. Zhang, W., and A. Barrion (2006), Function approximation and documentation of sampling data using ANNs, Environ. Monit. Assess. 122, 1-3, 185-201, DOI: 10.1007/s10661-005-9173-6.
  • 60. Zurada, J.M. (1992), Introduction to Artificial Neural Systems, West Publishing Company, St. Paul, MN.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL8-0026-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.