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ABSTRACT
 e paper presents laboratory studies on measuring accelerometers, which were modelled in the classical di$erential 

equations, as well as the fractional calculus. Measurement errors were examined and the classical and fractional 

models in terms of dynamic properties were compared.  e advantages of fractional calculus in modelling dynamic 

elements were also indicated.
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1. Introduction

 e recent dynamic development of the research into the use of 

fractional calculus for the analysis of dynamic systems encouraged 

the author to attempt its use for the analysis and modelling of 

transducers and measurement systems.  e di$erential equation 

describing an absolute movement of the transducer’s seismic mass 

[4], [6], [7], [8] takes the form:

 (1)

A relative shi* of the seismic mass is introduced in equation (1):

w(t)=y(t) - x(t)  (2)

changes it into:               

 
(3)

Taking into consideration the assumption that the dynamic 

behavior of the element responsible for damping is better described 

by the fractional derivative, equation (3) is written down as:

      (4)      

Generalizing equation (4) in view of the fact that integer 

order derivatives in the integral equation derivative are a special 

case of non-integer derivatives, we can write down:

 (5)
 

2. Identi#cation of transducer 
dynamics 

In order to identify sensor dynamics, a measurement system 

was constructed (Figure 1). 

 e DelataTron accelerometer, Type4507, manufactured by the 

Bruel&Kjaer company, characterized by sensitivity of 10.18 mV/

ms-2 was examined.  e sensor was placed on the electrodynamic 

inductor.
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Fig.1. Block diagram of the laboratory measurement system for 

examining accelerometers

A model accelerometer produced by VEB Metra, type KB 

12, sensitivity of 317 mV/ms-2 was aligned in one axis with the 

examined sensor. " e input signal was the vibrations of the 

inductor plate actuated by a sinusoidal signal from the generator. 

" e model signal was the one from the KB 12 sensor, whereas the 

signal examined was the signal from the 4507 sensor.

" e main objective of the study was identi% cation of the 

mathematical model of the 4507 sensor on the basis of signals 

received from the sensors. " e identi% cation method applied 

here was ARX [1], [2], [9] – the examined signal was compared 

with the model signal and on the basis of the comparison discreet 

transmittance of the examined sensor was determined.

Signals were collected at a sampling frequency of 10  000 

Hz each with the use of the measurement card. " e sampling 

time used in the ARX method was 0.0001 s. " e voltage-source 

signals were examined. " en they were converted/translated into 

acceleration. Identi% cation was accomplished with the use of the 

MATLAB&Simulink package [10] (Fig. 2.).

Fig.2. Measurement system for the examined sensor identi9 cation

As a result of the ARX identi% cation method, the examined 

sensor transmittance looks as follows:
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Figure 3 depicts frequency characteristics of the sensor’s 

amplitude and phase

Fig.3. Amplitude and phase characteristics of the sensor model

Figure 4 shows the signals entering the system identi% cation 

block. " e model signal amplitude di; ers from the amplitude of 

the identi% ed signal.

Fig.4. Signals entering the identi9 cation block: blue – model signal, 

red – identi9 ed signal

As a result of the ARX identi% cation method, the identi% ed signal 

and the signal characteristics in the model have the same amplitude 

and there is no phase shi<  between these signals (Figure 5.)

Fig.5. ARX block functioning: top: the characteristics being 

identi9 ed (red) and the characteristics from the model (blue); 

bottom: error characteristics during identi9 cation

In order to compare characteristics from the model sensor, examined 

sensor and the examined sensor model in the MATLAB&Simulink 

environment [10], the system presented in % gure 6 was built.

Fig.6. The system comparing characteristics from the model sensor, 

examined sensor and the obtained model of the examined 

sensor
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Fig.7. Comparison of signals: blue – from the model sensor; red – 

from the examined sensor; green - from the examined sensor 

model. Axes:  X – time, Y – acceleration 

 e comparison of the characteristics indicates that signals 

from the examined sensor and the examined sensor model have 

identical amplitudes.

3. Measurement error analysis

As a result of conducted measurements (section 1) high 

values of error peaks were observed. They are a consequence 

of the determination of error for the characteristics of variables 

over time, which change their values from positive to negative. 

Sensitivity of the examined sensor is much lower that that of the 

model sensor – thus we deal with the cases when the model sensor 

displays the acceleration value close to zero, whereas the examined 

sensor, due to its low sensitivity, indicates zero. Hence peaks in the 

characteristics of errors.  e lowest error value is reached at values 

close to the amplitude, the highest – at those close to 0.

Fig.8. Error characteristics: X – time, Y – relative error (%)

Fig.9. Error characteristics in the changed Y scale

It was assumed that the measure of accuracy of the dynamic 

characteristics reproduction by the examined sensor and the model 

of this sensor shall be the median relative error. In the examined 

case (the sinusoidal characteristics of 300 Hz in frequency), the 

median for the error characteristics is:

for the sensor’s relative error: 29.1945%

for the model’s relative error: 29.5564%

It can be concluded that the sensor’s model reproduces the 

model signal with the relative error larger by 0.3619% than the 

sensor’s error.  is value occurs at examining the characteristics 

of the same frequency as in the case of the examined sensor 

identi(cation. When the frequency of the examined characteristics 

is di)erent from that at identi(cation, then the error values will be 

higher.  e relative error values for the sensor and its model for 

di)erent frequencies are shown in Table 1.

Table 1. Relative error values for the sensor and its model

Frequency
[Hz]

Sensor’s relative 
error [%]

Model’s relative 
error [%]

100 45.2213 30.8089

200 22.9227 30.2997

300 29.1945 29.5564

400 70.60.78 28.3097

500 90.5626 26.0184

 e bigger the di)erence between frequencies of the examined 

characteristics and the characteristics at which identi(cation was 

accomplished, then the bigger the di)erence between the median 

relative error of the sensor and of the model is.

4. Comparison of the integer and 
fractional order models of the 
accelerator

In order to check whether the model based on the fractional 

order equation describing the dynamic behavior of the object 

reproduces the model signal better than the “classical” model, on 

the basis of the sensor transmittance model (6) determined by 

the ARX method, a group of models was determined by means 

of fractional order equations. Our investigations started from one 

2  fractional order responsible for damping.  e order of the 

2  derivative changes the range of values from 0.94 to 2.08 by 

a 0.02 step.

Frequency characteristics of the models’ amplitude and phase 

are depicted in (gures 10 and 11.

Fig.10. Amplitude and phase characteristics for diIerent 2
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Fig.11. Amplitude and phase characteristics for di5erent 
2

 in a 

changed Y scale

Fig.12. Amplitude and phase characteristics for the fractional 

notation 22
 – green and for the classical notation - blue 

Table 2. Median relative error values for the fractional order model
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100 20.8040 10.0049

200 20.8041 9.4956

300 20.8042 8.7522

400 20.8039 7.5058

500 20.8040 5.2144

Similar investigations were carried out for the 1  fractional 

order.

Fig.13. Amplitude and phase characteristics for changed 1

Fig.14. Amplitude and phase characteristics for 11
 (green) and 

the “classical” notation

Fig.15. Amplitude and phase characteristics for 11
 (green) and 

“classical” notation  – enlarged scale in Dgure 14

Table 3. Median relative error values for the fractional order model
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100 20.8040 24.4173

200 20.8041 2.1186

300 20.8042 8.3903

400 20.8039 49.8039

500 20.8040 69.7586

In summary, we can conclude that out of the group of 

characteristics of the 2  fractional order  the closest to the ideal one 

with reinforcement and phase shi- equal 0 is the characteristic for 

the order equal 1. Due to the way of transmittance determination 

of fractional coe/cients describing the sensor’s dynamic behavior, 

the amplitude and phase characteristics di%er from the same 

characteristics determined for the “classical” notation of dynamic 

behavior (transmittance is di%erent).

On the basis of amplitude and phase characteristics of the 

sensor’s model obtained by the ARX method and the sensor’s model 

determined by the “fractional order method” it can be  concluded 

that the fractional order model reproduces the sensor’s dynamic 

behavior far more accurately:

amplitude and phase characteristics are closer to the linear 

characteristic in a larger scope of signal processing;

in the case of frequency above 1 Hz, amplitude and phase 

frequencies are almost linear: magnitude is within the 

boundaries from -2.02 to -2.03 dB, and the phase shi- is within 

the range from 0.040 to 10-6. In the case of the “classical” 
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model of the transducer model, one cannot think about such 

great linearity.

Determination of the median relative error for the examined 

characteristics, let us claim that:

median relative error in the case the fractional order model’s 

response is examined is constant up to the third decimal place 

(this is con#rmed by linearity of earlier obtained Bode’s plot 

of frequency characteristics);

in each examined case there is an advantage when the sensor’s 

fractional model is used, the more so, the higher the di&erence 

between the frequency at which the “classical” model was 

determined (300 Hz) and the frequency of the examined 

characteristics. For the cases examined, the percentage decrease 

in the median error ranges from 5.2144 to 10.0049 %.

5. Examination of the 
accelerometer models of ν

1
  

and ν
2
 fractional orders 

Bode’s plot of frequency characteristics for the 1  and 2  order 

combinations was examined (Table 4).

Table 4. Order combinations of orders in equation (5) 

1
0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

2
1.94 1.96 1.98 2 2.02 2.04 2.06 2.08

Fig.16. Bode’s characteristics for 11
 and 22

 determined by 

the method for fractional orders

Linearity starts from ca. 0.5 Hz at magnitude equal -2.02 dB 
and the maximum phase shi' equal 0.050 (the peak in the next 
(gure). )e phase shi' for the frequency of 1 Hz equals 0.0050.

Fig.17. Characteristics from ?gure 14 in enlarged scale

It is worth noticing that Bode’s characteristics in the case of 
fractional 1  only and 1  and 2  are of a di+erent shape when 
it comes to low frequencies. Above 1 Hz it is practically of no 
importance whether it is only 1  which is non-linear, or 1  and 

2 . Frequency characteristics are practically identical. )us, the 
use of non-linear 1  only has the same e+ect as using fractional 
(non-integer) 1  and 2 . )e very method of determining the 
sensor model’s dynamic behavior a+ects accuracy of such a model 
processing. In the case of classical and fractional models for 
identical (integer) orders the observed processing accuracy is 
higher in the case of the “fractional” type model. 

6. Conclusion

)e use of the fractional calculus for describing characteristics 
of dynamic systems seems justi(ed for the following reasons:

Global research into numerous physical phenomena (description 
of properties of viscoelastic materials, liquid permeation through 
porous substances, electric load transfer through an actual 
insulator, heat transfer through a heat barrier, or descriptions 
of friction, [3], [11], [12], [14]), showed that fractional calculus 
describes this type of phenomena more accurately than classical 
mathematical analysis.
Continuous physical phenomena of the real world should be 
described “intuitively” by means of di+erential equations of 
orders taken from the set of real numbers and not only, integer 
numbers, i.e. discrete. Classical integrals and integer order 
derivatives are only speci(c cases of the fractional calculus.
)e fact that in previous decades researchers from di+erent 
areas of science did not use the fractional calculus is accounted 
for by the author by the lack of IT tools having great computing 
potential which in our times are widely accessible.
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