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ABSTRACT
 e paper introduces a self-organizing tra"c signal system for an urban road network. In the presented system, 

the tra"c control decisions are made on the basis of predictions that are obtained from a fuzzy cellular tra"c 

model.  e fuzzy cellular model represents tra"c streams at the microscopic level.  erefore it can directly map 

parameters of individual vehicles and the vehicle classes can be taken into account in making the control decisions. 

Simulation experiments were performed to compare the performance of the self-organizing tra"c control for two 

scenarios: #rst, when the class of vehicles is taken into account and second, when the information on the vehicle 

class is unavailable. Results of the simulations allow us to explore the possibility of performance enhancement of 

the urban tra"c control through the utilisation of microscopic tra"c models and vehicle classi#cation systems.
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1. Introduction and motivation

 e main aim of urban tra"c control is to maximize the 

throughput of a road network by means of real-time actions [8]. 

 is aim is usually pursued by application of adaptive tra"c signal 

control strategies that take into account current tra"c estimates 

and predictions [9] in order to optimize objective functions, such 

as minimizing travel time, delays or stop counts. 

Conventional tra"c control methods attempt to optimize 

tra"c signal settings for a road network in a centralized system. 

However, the global optimization of tra"c &ow in a road network 

is known to be an NP-hard problem [8]. Due to the high 

computational complexity, the optimization algorithms cannot 

be executed in real-time.  erefore, the conventional centralized 

tra"c control approaches are based on a simpli#ed optimization 

(adaptation), which concerns only selected parameters (cycle time, 

splits, o'sets) for some pre-calculated signalization schedules [5].

Limitations of the available methods have motivated the recent 

development of self-organizing tra"c signal systems. A system is 

called self-organizing if its elements interact in order to achieve 

a global function or behaviour.  is function or behaviour is not 

imposed by a single element, nor determined hierarchically but it 

emerges dynamically as the elements interact with one another. 

 e interactions of elements produce feedbacks that regulate the 

system [3]. 

In the self-organizing tra"c control systems, the global coordination 

of tra"c &ows in a road network is achieved through a decentralized 

optimization scheme. According to this method, the tra"c control 

unit at an intersection makes autonomous decisions about optimal 

signal settings on the basis of local tra"c measurements. Additionally, 

the self-organizing optimization algorithm can utilize tra"c data 

delivered from neighbouring intersections.  e local optimization 

rules lead to emergent coordination patterns such as “green waves” 

and achieve an e"cient, decentralized tra"c light control. When 

applying this control strategy, signal plans are not based on cyclic 

control schemes determined from average tra"c conditions, but they 

respond instead to actual real-time tra"c data.  is makes the tra"c 

control more &exible with respect to local demands and more robust 

to variations in the tra"c &ows.

 e self-organized tra"c control algorithms available in the 

literature were developed using macroscopic tra"c models that 

describe tra"c behaviour in terms of tra"c volumes, queue lengths 

and congestion levels. By contrast, the system presented in this 

paper is based on a microscopic fuzzy cellular tra"c model, which 

considers individual vehicles and thus the vehicle parameters can 
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be taken into account in making control decisions. !e parameters 

of particular vehicles (position, velocity, acceleration, class, etc.) are 

accessible in modern tra"c monitoring platforms [12]. !ese data 

cannot be fully utilized when using the existing control methods. 

Interestingly, in the proposed approach the precision of tra"c 

description is variable and can be adjusted to match the precision 

of available tra"c data.

!e rest of the paper is organized as follows.: Related works 

are reviewed in Section 2. Section 3 describes details of the self-

organized tra"c control algorithm and presents the microscopic 

tra"c model, which enables on-line simulation of tra"c streams for 

the control purposes. Section 4 contains results of the simulation 

experiments that were performed in order to examine the 

dependency between input data precision and performance of 

the self-organizing tra"c control. Finally, conclusions are given 

in Section 5.

2. Related works

In the literature there is an increasing number of publications 

dealing with application of the self-organization paradigm in the 

context of urban tra"c control. One of the %rst papers in this 

direction [14] introduced a self-organizing control strategy for 

a signal network described as a system of nonlinear oscillators 

with the nearest neighbourhood coupling. Another proposal of 

self-organizing control strategy was based on macroscopic two-

dimensional cellular automata, which enables real-time processing 

of tra"c data [15].

In [3] three simple tra"c-responsive methods were introduced for 

tra"c signal control that uses the self-organization paradigm. It was 

demonstrated that with simple rules and no direct communication, 

tra"c lights are able to self-organize and adapt to changing tra"c 

conditions, reducing waiting times, number of stopped cars, and 

increasing average speeds. !ese methods were further extended 

to more complex scenarios employing an hexagonal road network 

model with multiple-way intersections [4]. As a continuation of 

this research direction the paper [1] proposed a history-based self-

organizing tra"c control, which was designed to %t the existing 

conventional vehicle detection technology.

A control strategy reported in [5] was inspired by an observation 

of self-organizing oscillations of pedestrian &ows at bottlenecks. 

!e approach assumes a priority-based control of tra"c lights 

by the vehicle &ows themselves, taking into account short-term 

predictions of vehicle &ows. For the purpose of this strategy the 

tra"c &ow predictions were obtained using a macroscopic &uid-

dynamic model. !is self-organizing tra"c control was compared 

to the currently implemented state-of-the-art adaptive control 

in a simulation of real-world road network [6]. Results of these 

experiments showed that the self-organizing control provides 

a superior performance.

Research reported in [13] was conducted in order to develop 

a self-organizing tra"c signal system that enables utilization of 

data collected in a vehicular sensor network. Another example of 

potential future applications is the in-vehicle tra"c lights system 

based on a vehicle to vehicle communication [10].

3. Proposed approach

!is section introduces a self-organizing tra"c signal system for 

an urban road network. A tra"c control algorithm in this system 

was developed on the basis of the prioritization and stabilization 

strategies by Lämmer and Helbing [5]. !e main novelty of the 

proposed method lies in the fact that all control decisions are based 

on predictions obtained from fuzzy cellular tra"c model. !e fuzzy 

cellular model represents tra"c streams at the microscopic level 

and therefore it can directly map parameters of individual vehicles. 

From the practical point of view, it means that the vehicle classes 

can be directly taken into account in making control decisions. 

In comparison with the original self-organizing control method 

[5], which uses a macroscopic (&uid dynamic) tra"c model, the 

proposed approach enables a better utilization of the microscopic 

tra"c data that can be collected using the available sensing technologies.

3.1. Tra&c control algorithm

In the presented algorithm, the decentralized self-organizing 

strategy [5] was applied to manage the tra"c &ow in a road network 

by controlling tra"c signals. !e self-organizing tra"c control is 

based on an optimization and a stabilization rule. Both rules are 

executed in parallel for all intersections in the road network in 

order to adapt the tra"c control to local &ow conditions.

According to the self-organizing tra"c control strategy the 

consecutive control decisions are made in time steps of one second. 

A particular control decision determines which tra"c stream should 

get a green signal at an intersection. !e decision is made using the 

following formula:  

 

 

   (1)

where: σ indicates the tra"c stream which will get green signal,  

is an ordered set containing indices of the tra"c streams that have 

been selected using the stabilization rule, π
i
 denotes priority of 

stream i, which is calculated on the basis of the optimization rule.

!e aim of stabilization rule is to assure that all tra"c streams 

will be served at least once in T
max

 period. To this end, for each 

tra"c stream a service interval Z
i
 is predicted as the sum of 

preceding red time r
i
 for stream i, intergreen time τ

i

0 before 

switching the green signal for stream i, and green time G
i
 required 

for vehicles in lane i to pass the intersection:

 

    (2)

!e index i of tra"c stream joins the set  as soon as  

Z
i
 ≥ T

max
.

Optimisation rule aims for minimizing waiting times by 

serving the incoming tra"c as quickly as possible. According to 

this rule a tra"c stream with the highest priority index π
i
 gets 

green signal, provided that the set  is empty. !e priority index 

for stream i is de%ned as

 

 

    (3)
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where: N
i
 denotes number of vehicles in lane i that are expected to 

pass the intersection in time τ
i
 + G

i
, τ

i,σ
pen is a penalty for switching 

from stream σ to i, τ
i
 denotes intergreen time a"er green signal for 

stream i and σ is the index of currently served tra#c stream.
For more detailed information on the self-organizing strategy 

see the paper by Lämmer and Helbing [5]. 'e tra#c control 
algorithm is summarized by the pseudocode in Fig. 1. 'e capital 
letters G, N, X and Z in the pseudocode were used to indicate the 
predicted (estimated) quantities that are represented by fuzzy 
numbers. 'e fuzzy variables X describe positions of vehicles. 
Minimum green time is denoted by e

min
.

for each time step do

 for each lane i = 1 … m do

  if signal i is red then 

   r
i
 = r

i
 + 1 

   if i =  and min
i
 r

k
 = 

i

0 then

    set signal i green

    r
i
 = 0

  else

   e
i
 = e

i
 + 1

   if i   then 

    set signal i red

    e
i
 = 0

  for each vehicle j = 1 … n(i)

   update X
i,j

  estimate N
i

  predict G
i

  compute Z
i
 and 

i

  if Z
i
 >= T

max
 then add i to 

 if e  >= e
min
 then 

  if  is empt  then  = arg max
i
 

i

  else  = head 

Fig. 1. Pseudocode of tra1c control algorithm

3.2. Tra1c model

As it was mentioned at the beginning of this section, all 

control decisions in the presented system are based on predictions 

obtained from fuzzy cellular tra#c model. 'e microscopic tra#c 

model is used to estimate the numbers of vehicles approaching an 

intersection (queue lengths N
i
) and to predict the required green 

times (G
i
). 

Estimation of queue lengths is based on both the real tra#c data 

acquired from a tra#c monitoring system and the results of real-

time simulation. During the real-time simulation the tra#c model 

is used to estimate the missing positions of vehicles that cannot be 

determined by the monitoring system. Besides the data on vehicle 

positions, the real-time simulation can also take into account the 

classes of particular vehicles, if such information is available.

Results of the real-time simulation (i.e. data on individual 

vehicles approaching an intersection) are further used to determine 

initial conditions for faster than real-time simulation. 'e task of 

the faster than real-time simulation is to predict the required green 

times (G
i
) for all lanes at an intersection.

'e fuzzy cellular model for tra#c simulation was formulated 

as a hybrid system combining cellular automata and fuzzy calculus. 

It was based on a cellular automata approach to tra#c modelling 

that ensures the accurate simulation of real tra#c phenomena [7]. 

A characteristic feature of this model is that it uses fuzzy numbers 

to represent vehicles positions, velocities and other parameters. 

Moreover, the model transition from one time step to the next is 

based on arithmetic of the ordered fuzzy numbers. 'is approach 

benefits from advantages of the cellular automata models and 

eliminates their main drawbacks i.e. necessity of multiple Monte 

Carlo simulations and calibration issues [11].

A tra#c lane in the fuzzy cellular model is divided into cells 

that correspond to the road segments of equal length. Road tra#c 

streams at an intersection are represented by sets of vehicles. A 

vehicle j in tra#c lane i is described by its position X
i,j
 (occupied 

cell) and velocity V
i,j
 (in cells per time step). 'e maximum velocity 

for vehicle j is de*ned by the parameter V
max,i,j

. 'is parameter was 

used in the presented study to distinguish vehicle classes. Velocities 

and positions of all vehicles are computed simultaneously in discrete 

time steps of one second. 'e necessary computations are based on 

rules of the cellular automata models. More detailed information 

on the tra#c simulation with fuzzy cellular model can be found in 

[9-11].

Fig. 2. Membership function of fuzzy number A

It should be noted that all the above mentioned variables in the 

tra#c model are expressed by triangular fuzzy numbers. 'e fuzzy 

numbers are de*ned by 5-tuples of real numbers and the following 

notation is used:

 
 (4)

Membership function of the fuzzy number is shown in Fig. 

2. 'e components a(0) and a(4) determine the allowable range of 

values a(1), a(2) and a(3).

'e application of fuzzy calculus helps to deal with incomplete 

traffic data and enables straightforward determination of the 

uncertainty in simulation results [10]. 'ere are two main advantages 

of the fuzzy cellular model application: *rstly, the tra#c simulation 

is computationally e#cient due to low complexity of the model; 

secondly, the uncertainties of the simulation inputs and outputs 

can be represented by means of fuzzy numbers. An example of 

simulation results is illustrated in Fig. 3. 'e gray triangles in this 

*gure represents schematically the fuzzy values of the estimated 

queue length N
i
 (simulation input) as well as the predicted green 

time G
i
 (simulation output).
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Fig. 3. Example of simulation results

4. Experiments

Simulation experiments were performed in order to compare 

performance of the self-organizing tra"c control for two scenarios: 

#rst, when the class of vehicles is taken into account and second, 

when the information on vehicle class is unavailable. Moreover, 

utilization of two di!erent tra"c monitoring systems was considered, 

i.e. a road-side vehicle detection system and a vehicular sensor 

network (VSN). For the road-side detection system it was assumed 

that vehicles can be detected (i.e. their positions can be determined) 

only when passing intersections or entering the road network. In 

the case of vehicular sensor network the complete information on 

vehicles positions is available at each time step of the simulation.

$e experiments were performed in a tra"c simulator which 

was developed for this purpose on the basis of Nagel-Schreckenberg 

(NaSch) stochastic cellular automata [4]. Topology of the simulated 

network is presented in Fig. 5. Roads are unidirectional, thus each 

intersection has two incoming tra"c streams and two signals. 

Links between intersections consists of 40 cells that correspond to 

the distance of 300 m.

A simple modi#cation of the original NaSch model was 

introduced to take into account two classes of vehicles that di!er 

in their free-'ow velocities. $e obtained average free-'ow velocity 

was 1.1 cells per time step (30 km/h) for slow vehicles and 1.9 cells 

per time step (50 km/h) for fast vehicles (the simulation time step 

is one second). 

$e self-organizing tra"c control was simulated assuming that 

the intergreen times τ as well as the minimum green times g
min

 are 

equal to 5 s and the maximum period T
max

 is 120 s. For the purpose 

of control decision making, tra"c streams were mapped using 

the fuzzy cellular model. In this model, the maximal velocities 

for particular vehicles were determined by fuzzy numbers on the 

basis of the class information. If the information on vehicle class 

is available (scenario 1) then the maximal velocity V
max

 in cells per 

time step is determined as (1, 1, 1.1, 1.2, 2) for slow vehicles and 

(1, 1.8, 1.9, 2, 2) for fast vehicles. In opposite situation (scenario 

2), the maximal velocity for all vehicles is determined as (1, 1, 1.5, 

2, 2).

Fig. 4. Simulated road network

Results of the simulation experiments in Figs. 5-10 illustrate 

performance of the self-organizing tra"c control for various sets 

of the tra"c data used in making control decisions. $e average 

delays of vehicles were determined from 300 hour tra"c simulation. 

During this experiment, both the tra"c 'ow volume and the 

fraction (percentage) of slow vehicles were changed in a wide range. 

$e solid lines in diagrams represent average delay for the #rst 

scenario (with vehicles classi#cation), the dashed lines correspond 

with the second scenario (unavailable class information). Figs. 5-7 

relate to the case of using road-side detection system to collect 

the tra"c data (information on vehicle position available only at 

the network entrances and at intersections). Figs. 8-10 shows the 

results obtained for the case of tra"c monitoring by vehicular 

sensor network (information on vehicle position available in entire 

road network). $e delays in Figs. 5 and 8 were registered for the 

fraction of slow vehicles equal to 10%. $e charts in Figs. 6 and 9 

were obtained assuming the tra"c 'ow volume of 540 vehs/h.

$e simulation results show that the availability of detailed 

information on vehicles positions in VSN allows the self-organizing 

tra"c control to reach higher performance for all analyzed tra"c 

'ow volumes and all percentages of slow vehicles (compare Fig. 5 

with Fig. 8 and Fig. 6 with Fig. 9). 

Fig. 5. Average delay vs. ;ow volume (road-side detection)
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Fig. 6. Average delay vs. fraction of slow vehicles (road-side detection)

Fig. 7. Delay reduction due to vehicles classi<cation (road-side 

detection)

If the tra"c control algorithm takes into account the 

information about class of vehicle, then the resulting improvement 

of the tra"c control performance (i.e. delay reduction) grows with 

the volume of tra"c $ow (Figs. 5 and 8). 

Fig. 8. Average delay vs. >ow volume (VSN)

Fig. 9. Average delay vs. fraction of slow vehicles (VSN)

Fig. 10. Delay reduction due to vehicles classi<cation (VSN)

Utilization of the class information enables reduction in the 

average delay, especially for the percentage of slow vehicles in 

range between 10% and 50% (Figs. 6 and 9). #e highest relative 

reduction of the average delay was observed for the percentage of 

slow vehicles equal to 10% (Figs. 7 and 10).

5. Conclusion and future works

In this paper the self-organizing tra"c control strategy was 

integrated with the microscopic fuzzy cellular tra"c model. #e 

proposed approach allows the tra"c control system to utilize input 

data that describe parameters of particular vehicles. Such microscopic 

tra"c data can be collected in tra"c monitoring systems that are based 

on new telematics technologies, e.g. video-detection or vehicular 

networks.

Traffic control decisions in the proposed system are made 

on the basis of input data that describe tra"c streams at the level 

of individual vehicles. Processing of the large input data sets is 

performed by using fuzzy cellular tra"c model, which enables a fast 

prediction of queue lengths at intersections. Due to the application 

of fuzzy calculus, the model is suitable for processing incomplete 
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input data sets that are obtained when some of the data on vehicle 

parameters are unavailable or ignored. !erefore, the fuzzy cellular 

model can be used to compare the performance of tra"c control for 

di#erent sets of the input data.
Evaluation of the proposed tra"c control strategy were performed 

in a simulation environment. !e experiments aimed at investigating 
the e#ect of input data precision on performance of the tra"c control. 
To this end, average delay of vehicles was analysed for a tra"c control 
in a road network. !e analysis covered utilization of detailed data 
describing positions and classes of individual vehicles. Results of the 
simulations shows that the performance of urban tra"c control can 
be enhanced through utilization of microscopic tra"c data.

!e obtained results provide a strong motivation for further 
research on applications of both the self-organization paradigm 
and the microscopic models in adaptive urban tra"c control. An 
important issue for future studies is the validation of the proposed 
approach in real-tra"c conditions. !e experiments should also 
take into consideration various measures of tra"c performance 
(e.g. travel times, queue lengths, stop counts) and potential sources 
of errors, i.e. detection accuracy and quality of communication 
channels.
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