PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of Mg65Cu25Y10 bulk metallic glasses

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper describes the preparation, structure and thermal properties of Mg-based bulk metallic glass with chemical composition of Mg65Cu25Y10 in form of as-cast rods. Design/methodology/approach: The investigations on the Mg65Cu25Y10 glassy rods were conducted by using X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA) and differential scanning calorimetry (DSC) methods. Findings: The X-ray diffraction investigations have revealed that the studied as-cast rod was amorphous. The DSC curve informs about the single stage of crystallization process. The onset crystallization temperature has a value of Tx = 463 K and peak crystallization temperature reaches a value of Tp = 480 K. The fractures of studied alloy could be classified as mixed fracture with indicated “river” and “smooth” fractures. Both type of the fracture surfaces consist of weakly formed “river” and “shell” patterns and “smooth” regions. The “river” patterns are characteristic for metallic glassy alloys. Practical implications: The studied Mg-based bulk metallic glasses are applied for many applications in different elements. Mg-based bulk metallic glasses have much higher tensile strength and Vickers hardness and much lower Young’s modulus in contrast to crystalline magnesium alloys. Magnesium alloys are very attractive for transport and aerospace applications because they are the lightest among the commercially available structural alloys and show excellent damping capacity. Originality/value: Fabrication of amorphous alloy rod Mg65Cu25Y10 by pressure die casting method.
Rocznik
Strony
77--84
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
autor
autor
  • Division of Nanocrystalline and Functional Materials and Sustainable Pro-ecological Technologies, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, agnieszka.gawlas-mucha@polsl.pl
Bibliografia
  • [1] W.H. Wang, C. Dong, C.H. She, Bulk metallic glasses, Materials Science and Engineering R 44 (2004) 45-98.
  • [2] W. Klement Jr., R.H. Willens, P. Duwez, Noncrystalline structure in solidified gold-silicon alloys, Nature 187 (1960) 869-870.
  • [3] J.F. Loeffler, Bulk metallic glasses, Intermetallics 11 (2003) 529-540.
  • [4] R. Nowosielski, R. Babilas, Fabrication of bulk metallic glasses by centrifugal casting method, Journal of Achieve-ments in Materials and Manufacturing Engineering 20 (2007) 487-490.
  • [5] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia 48 (2000) 279-306.
  • [6] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by Atomic Size Difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions 46 (2005) 2817-2829.
  • [7] C. Suryanarayana, A. Inoue, Bulk Metallic Glasses, CRC Press, Boca Raton London New York, 2011.
  • [8] A. Inoue, Bulk amorphous and nanocrystalline alloys with high functional properties, Materials Science and Engineering A 304-306 (2001) 1-10.
  • [9] N.H. Pryds, Bulk amorphous Mg-based alloy, Materials Science and Engineering A 375-377 (2004) 168-193.
  • [10] A. Inoue, K. Ohtera, K. Kita, T. Masumoto, New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M=Fe, Co, Ni or Cu) systems, Japanese Journal of Applied Physics 27/3 (1988) 280-282.
  • [11] A. Inoue, T. Masumoto, Mg-based amorphous alloys, Materials Science and Engineering A 173 (1993) 1-8.
  • [12] L.A. Dobrzański, T. Tański, J. Domagał, L. Cizek, Mechanical properties of magnesium casting alloys, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 99-102.
  • [13] J.P. Stobrawa, Z.M. Rdzawski, Characterisation of nano-structured copper-WC materials, Journal of Achievements in Materials and Manufacturing Engineering 32/2 (2009) 171-178.
  • [14] M. Mezbahul-Islam, D. Kevorkov, M. Medraj, The equilibrium phase diagram of the magnesium-copper-yttrium system, Journal of Chemical Thermodynamics 40 (2008) 1064-1076.
  • [15] J.L. Soubeyroux, S. Puech, J.J. Blandin, Synthesis of new Mg-based bulk metallic glasses with high glass forming ability, Materials Science and Engineering A 449-451 (2007) 253-256.
  • [16] P.J. Hsieh, S.C. Lin, H.C. Su, J.S.C. Jang, Glass forming ability and mechanical properties characterization on Mg31Y11-XGdX bulk metallic glasses, Journal of Alloys and Compounds 483 (2009) 40-43.
  • [17] X. Hui, R. Gao, G.L. Chen, S.L. Shang, Y. Wang, Z.K. Liu, Short-to-medium-range order in Mg65Cu25Y10 metallic glass, Physics Letters A 372/17 (2008) 3078-3084.
  • [18] R. Hojvat de Tendler, M.R. Soriano, M.E. Pepe, J.A. Kovacs, E.E. Vicente, J.A. Alonso, Calculation of metastable free-energy diagrams and glass formation in the Mg-Cu-Y alloy and its boundary binaries using the Miedema model, Intermetallics 14 (2006) 297-307.
  • [19] J. Soubeyrouxa, S. Puech, Phases formation during heating of Mg-Cu-Ag-Y bulk metallic glasses, Journal of Alloys and Compounds 495 (2010) 330-333.
  • [20] A. Inoue , A. Kato, T. Zhang, S. G. Kim, T. Masumoto, Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method, Materials Transactions 32 (1991) 609-616.
  • [21] E. David, Nanocrystalline magnesium and its properties of hydrogen sorption, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 87-90.
  • [22] R. Busch, W. Liu, W.L. Johnson, Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid, Journal of Applied Physics 83 (1998) 4134- 4141.
  • [23] G. Chen, M. Ferry, Some aspects of the fracture behaviour of Mg65Cu25Y10 bulk metallic glass during room-temperature bending, Journal of Materials Science 41 (2006) 4643-464.
  • [24] A. Kiełbus, Microstructure of AE44 magnesium alloy before and after hot-chamber die casting, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 459-462.
  • [25] M. Starowicz, A. Sojka, B. Stypuła, Influence of electrolyte on a composition and size of copper compound particles, Archives of Materials Science and Engineering 28/10 (2007) 609-612.
  • [26] S. Lesz, P. Kwapuliński, R. Nowosielski, Formation and physical properties of Fe-based bulk metallic glasses with Ni addition, Journal of Achievements in Materials and Manufacturing Engineering 31 (2008) 35-40.
  • [27] S. Lesz, Preparation of Fe-Co-based bulk amorphous alloy from high purity and industrial raw materials, Archives of Materials Science and Engineering 48/2 (2011) 77-88.
  • [28] A.A. Ogwu, T.H. Darma, E. Bouquerel, Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering, Journal of Achievements in Materials and Manu-facturing Engineering 24/1 (2007) 172-177.
  • [29] R. Babilas, R. Nowosielski, Iron-based bulk amorphous alloys, Archives of Materials Science and Engineering 44/1 (2010) 5-27.
  • [30] R. Nowosielski, R. Babilas, Preparation, structure and properties of Fe-based bulk metallic glasses, Journal of Achievements in Materials and Manufacturing Engineering 40/2 (2010) 123-130.
  • [31] A. Castellero, B. Moser, D.I. Uhlenhaut, F.H. Dalla Torre, J.F. Löffler, Room-temperature creep and structural relaxation of Mg-Cu-Y metallic glasses, Acta Materialia 56 (2008) 3777-3785.
  • [32] Y.C. Chang, T.H. Hung, H.M. Chen, J.C. Huang, T.G. Nieh, C.J. Lee, Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy, Intermetallics 15 (2007) 1303-1308.
  • [33] D. Kim, B.J. Lee, N.J. Kim, Prediction of composition dependency of glass forming ability of Mg-Cu-Y alloys by thermodynamic approach, Scripta Materialia 52 (2005) 969-972.
  • [34] S.X. Song, H. Bei, J. Wadsworth, T.G. Nieh, Flow serration in a Zr-based bulk metallic glass in compression at low strain rates, Intermetallics 16 (2008) 813-818.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0060-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.