PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FEM modelling of magnetostrictive composite materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents a numerical model for the analysis of magnetostriction in composite materials in polymer matrix reinforced by Tb0.3Dy0.7Fe1.9 particles. The properties were determined by taking into account the applied stresses and magnetic field intensity. Design/methodology/approach: The finite element method for simulation the magnetostriction phenomenon was established by theoretical analysis based on experimental results. Findings: Thanks to the finite element method the numerical model has been formulated, enabling to simulate behavior of dynamically exciting rod with the nonlinear constituted model of magnetostrictive effect. The results received from experiments and simulations confirmed accuracy of this model for operating conditions, enabling a selection of magnetostrictive composite material with polymer matrix reinforced with Tb0.3Dy0.7Fe1.9 particles for specific application. Research limitations/implications: It was confirmed that using the finite element method can be a way for reducing the investigation cost. This paper proposes analysis which is efficient with respect to the number of simplifications in numerical model and accuracy of results. Practical implications: The proposed method could be helpful in the design process of magnetostrictive composite materials. Originality/value: Modelling based on the finite element method allows to simulating behavior of dynamically exciting rod with the nonlinear constituted model of magnetostriction phenomenon.
Rocznik
Strony
46--52
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] Z. Cao, J. Cai, Design of a giant magnetostrictive motor driven by elliptical motion, Sensors and Actuators A 118 (2005) 332-337.
  • [2]R. Pomirleanu, V. Giurgiutiu, High-field characterization of piezoelectric and magnetostrictive actuators, Journal of Intelligent Material Systems and Structures 15 (2004) 161-180.
  • [3]A.G. Jenner, R.J.E. Smith, A.J. Wilkinson, R.D. Greenough, Actuation and transduction by giant magnetostrictive alloys, Mechatronics 10 (2000) 457-466.
  • [4]H.A. Chowdhury, S.A. Mazlan, A.G. Olabi, Implementation of Magnetostrictive Material Terfenol-D in CNG Fuel Injection Actuation, Advanced Materials Research 47-50 (2008) 630-633.
  • [5]T. Zhang. C. Jiang, H. Zhang, H. Xu, Giant magnetostrictive actuators for active vibration control, Smart Materials and Structures 13 (2004) 437-477.
  • [6]S.J. Moon, C.W. Lim, B.H. Kim, Y. Park, Structural vibration control using linear magnetostrictive actuators, Journal of Sound and Vibration 302 (2007) 875-891.
  • [7]G. Engdahl, Handbook of Giant Magnetostrictive Materials, Academic Press, San Diego 2000.
  • [8]H. Zhag, D. Zeng, Magnetostriction and its inverse effect in Tb0.3Dy0.7Fe2 alloy, Journal of Applied Physics 107 (2010) 123918.
  • [9]V. Berbyuk, J. Sodhani, Towards modeling and design of magnetostrictive electric generator, Computers and Structures 86 (2008) 307-313.
  • [10]R. Corcolle, L. Daniel, F. Bouillault, Optimal design of magnetostrictive composites: an analytical approach, IEEE Transactions on Magnetics 44/1 (2008) 17-23.
  • [11]X. Guan, X. Dong, J. Ou, Predicting performance of polymer-bonded Terfenol-D composites under different magnetic fields, Journal of Magnetism and Magnetic Materials 321 (2009) 2742-2748.
  • [12]Y. Wan, J. Qiu, Z. Zhong, Interfacial stiffness dependence of the effective magnetostriction of particulate magnetostrictive composites, International Journal of Solids and Structures 44 (2007) 18-33.
  • [13]T. Chen, N. C.-W. Nan, G.J. Weng, G.-X. Chen, Unified approach for the estimate of effective magnetostriction of composites and polycrystals with particulate and columnar microstructures, Physical Review B 68 (2003) 224406.
  • [14]Y. Zhou, F.G. Shin, Modeling of Magnetostriction in Particulate Composite Materials, IEEE Transactions on Magnetics 41/6 (2005) 2071-2076.
  • [15]J.F. Herbst, T.W. Capehart, F.E. Pinkerton, Estimating the effective magnetostriction of a composite: A simple model, Applied Physic Letters 70/22 (1997) 3041-3043.
  • [16]C.W. Nan, Effective magnetostriction of magnetostrictive composites, Applied Physics Letters 72/22 (1998) 2897-2900.
  • [17]Z.J. Guo, S.C. Busbridge, A.R. Piercy, Z.D. Zhang, X.G. Zhao, B.W. Wang, Effective magnetostriction and magnetomechanical coupling of Terfenol-D composites, Applied Physics Letters 78/22 (2001) 3490-3492.
  • [18]A. Boczkowska, J. Kapuściński, Z. Lindemann, D. Witemberg-Perzyk, S. Wojciechowski, Composites, Publishing House of Warsaw University of Technology, Warsaw, 2000 (in Polish).
  • [19]P. Fedeliński, R. Górski, G. Dziatkiewicz, J. Ptaszny, Computer modelling and analysis of effective properties of composites, Computer Methods in Materials Science 11/1
  • [20]A. Pantano, F. Capello, Numerical model for composite material with polymer matrix reinforced by carbon nanotubes, Meccanica 43 (2008) 263-270.
  • [21]Y. Wan, D. Fang, K.C. Hwang, Non-linear constitutive relations for magnetostrictive materials, International Journal of Non-Linear Mechanics 38 (2003) 1053-1065.
  • [22]N.N. Sarawate, M.J. Dapino, A dynamic actuation model for magnetostrictive materials, Smart Materials and Structures 17 (2008) 065013.
  • [23]A Oliwa, J. Mikuła, K. Gołombek, L.A. Dobrzański, FEM modelling of internal stresses in PVD coated FGM, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 71-78.
  • [24]M.E.H. Benbouzid, G. Reyne, G. Meunier, Dynamic Modelling of Giant Magnetostriction in Terfenol-D Rods by the Finite Element Method, IEEE Transactions on Magnetics 31/3 (1995) 1821-1824.
  • [25]G.P. Carman, M. Mitrovic, Nonlinear constitutive relations for magnetostrictive material with applications to 1D problems, Journal of Intelligent Material Systems and Structures 6 (1995) 673-683.
  • [26]O.C. Zienkiewicz, R.L. Taylor, The finite element method for solid and structural mechanics, Elsevier Butterworth -Heinemann 2006.
  • [27]R. Górski, Optimization of composite structures by the coupled boundary and finite element method, Engineering modelling 32 (2006) 171-178.
  • [28]L.A. Dobrzański, A. Oliwa, T. Tański, Finite Element Method application for modelling of mechanical properties, Archives of Computational Materials Science and Surface Engineering 1/1 (2009) 25-28.
  • [29]L.A. Dobrzański, A. Pusz, A.J. Nowak, M. Górniak, Application of FEM for solving various issues in material engineering, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 134-141.
  • [30]X. Shang, E. Pan, L. Qin, Mathematical modeling and numerical computation for the vibration of a magnetostricitve actuator, Smart Materials and Structures 17/4 (2008) 045026.
  • [31]M.M. Roberts, M. Mitrovic, G.P. Carman, Nonlinear behavior of coupled magnetostrictive material system analytical/experimental, Proceeding of the International Society for Optics and Photonics SPIE 2441 1995 341-354.
  • [32]L.A. Dobrzański, A. Tomiczek, B. Ziębowicz, A. Nabiałek, Influence of the manufacturing technology on the properties of magnetostrictive composite materials, Proceedings of 8th International Conference on Industrial Tools and Material Processing Technologies ICIT & MPT, 2011, Ljubljana, Slovenia, 303-308.
  • [33]L.A. Dobrzański, A. Tomiczek, A. Nabiałek A., R. Zuberek, Structure and magnetic properties of magnetostrictive Tb0.3Dy0.7Fe1.9 / polyurethane composite materials, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 527-532.
  • [34]L.A. Dobrzański, M. Drak, Hard magnetic composite materials Nd-Fe-B with additions of iron and X2CrNiMo-17-12-2 steel, Journal of Alloys and Compounds 449/1-2 (2008) 88-92.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0056-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.