PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long-term development directions of PVD/CVD coatings deposited onto sintered tool materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this article is to evaluate strategic development perspectives of physical/ chemical vapour deposition of monolayer, multilayer and gradient coatings onto sintered tool materials with cemented carbides, cermets and tool ceramics substrates. The coating type was adopted as the criterion for technology division, thus obtaining eight technology groups for carried out research. Design/methodology/approach: In the framework of foresight-materials science research: a group of matrices characterising technology strategic position was created, materials science experiments using high-class specialised equipment were conducted and technology roadmaps were prepared. Findings: High potential and attractiveness were shown of the analysed technologies against the environment, as well as a promising improvement of mechanical and functional properties as a result of covering with the PVD/CVD coatings. Research limitations/implications: Research pertaining to covering sintered tool materials with the PVD/CVD coatings is part of a bigger research project aimed at selecting, researching and characterizing priority innovative material surface engineering technologies. Practical implications: The presented results of experimental materials science research prove the significant positive impact of covering with the PVD/CVD coatings on the structure and mechanical properties of sintered tool materials, which leads to the justification of their including into the set of priority innovative technologies recommended for application in industrial practice. Originality/value: The advantage of the article are results of comparative analysis of sintered tools materials with different types of coatings deposited in the PVD/CVD processes together with the recommended strategies of conduct, strategic development tracks and roadmaps of these technologies.
Rocznik
Strony
69--96
Opis fizyczny
Bibliogr. 82 poz.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • [1]FutMan. The Future of Manufacturing in Europe 2015-2020; The Challenge for Sustainability; Materials; Final Report; Groupe CM International, 2003, http://ec.europa. eu/- research/industrialtechnologies/pdf/pro-futman-doc3a. pdf.
  • [2]MatVis. C. Dreher, Manufacturing visions: A holistic view of the trends for European manufacturing, in: M. Montorio, M. Taisch, K.-D. Thoben (eds.), Advanced Manufacturing. An ICT and Systems Perspective, Taylor & Francis Group, London, 2007.
  • [3]Gennesys. H Dosch, M.H. Van de Voorde (eds.), Gennesys. White Paper. A New European Partnership between Nano-materials Science & Nanotechnology and Synchrotron Radiation and Neuron Facilities, Max-Planck-Insititut für Metalforschung, Stuttgart, 2009.
  • [4]NANOMAT, Headed by A. Szajdak, www.nanomat.- eitplus.pl.
  • [5]Technology foresight of polymeric materials in Poland, K. Czaplicka-Kolarz (ed.), Steady state analysis, Totem Publisher, Poznan, 2008 (in Polish).
  • [6]Advanced Industrial and Ecological Technologies for Sus-tainable Development of Poland, Headed by A. Mazurkiewicz, www.portaltechnologii.pl/3index/index.html.
  • [7]FORGOM, Headed by K. Czaplicka-Kolarz, J. Bondaruk, www.foresightgom.pl.
  • [8]FOREMAT, Technology Development Scenarios of Modern Metallic, Ceramic and Composites Materials. Reports of Project Co-Operators, B. Gambin, W. Sójkowski, A. Świderska-Środa (eds.), Unipress Publisher, Radom, 2010 (in Polish).
  • [9]L.A. Dobrzański, Forming the structure and surface proper-ties of engineering and biomedical materials, Foresight of surface properties formation leading technologies of engineering materials and biomaterials. International OCSCO World Press, Gliwice 2009.
  • [10]A.D. Dobrzańska-Danikiewicz, Computer Aided Foresight Integrated Research Methodology in Surface Engineering Area, work in progress.
  • [11]A.D. Dobrzańska-Danikiewicz, Foresight methods for technology validation, roadmapping and development in the surface engineering area, Archives of Materials Science Engineering 44/2 (2010) 69-86.
  • [12]A.D. Dobrzańska-Danikiewicz, E-foresight of materials surface engineering, Archives of Materials Science and Engineering 44/1 (2010) 43-50.
  • [13]A.D. Dobrzańska-Danikiewicz, E. Jonda, K. Labisz, Foresight methods application for evaluating laser treatment of hot-work steels, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 750-773.
  • [14]A.D. Dobrzańska-Danikiewicz, T. Tański, S. Malara, J. Domagała-Dubiel, Assessment of strategic development perspectives of laser treatment of casting magnesium alloys, Archives of Materials Science Engineering 45/1 (2010) 5-39.
  • [15]A.D. Dobrzańska-Danikiewicz, A. Drygało, Foresight methodology application for laser texturing of silicon surface, Proceedings of Polish-Ukrainian Scientific Conference – Mechanics and Computer Science, Chmielnicki, Ukraine, 2011, 156-157.
  • [16]A.D. Dobrzańska-Danikiewicz, K. Lukaszkowicz, Technology validation of coatings deposition onto the brass substrate, Archives of Materials Science Engineering 46/1 (2010) 5-38.
  • [17]A.D. Dobrzańska-Danikiewicz, A. Kloc-Ptaszna, , Determination of tool gradient materials value according to foresight methodology, Journal of Achievements in Materials and Manufacturing Engineering, article in press (2011).
  • [18]A.D. Dobrzańska-Danikiewicz, E. Hajduczek, M. Polok-Rubi-niec, M. Przybyła, K. Adamaszek, Evaluation of selected steel thermochemical treatment technology using foresight methods, Journal of Achievements in Materials and Manufacturing Engineering, 46/2 (2011) 115-146.
  • [19]L.A. Dobrzański, K. Gołombek, J. Kopała, M. Sokovic, Effect of depositing the hard surface coatings on properties of the selected cemented carbides and tool cermets, Journal of Materials Processing Technology 157-158 (2004) 304-311.
  • [20]L.A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated Al2O3+ZrO2 oxide tool ceramics, Journal of Materials Processing Technology 167 (2005) 438-446.
  • [21]L.A. Dobrzański, D. Pakuła, Comparison of the structure and properties of the PVD and CVD coatings deposited on nitride tool ceramics, Journal of Materials Processing Technology 164-165 (2005) 832-842.
  • [22]L.A. Dobrzański, D. Pakuła, E. Hajduczek, Structure and properties of the multi-component TiAlSiN coatings obtained in the PVD process in the nitride tool ceramics, Journal of Materials Processing Technology 157-158 (2004) 331-340.
  • [23]L.A. Dobrzański, M. Staszuk, J. Konieczny, W. Kwaśny, M. Pawlyta, Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics, Archives of Materials Science and Engineering 38/1 (2009) 48-54.
  • [24]I.Yu. Konyashin, PVD/CVD technology for coating cemen-ted carbides, Surface and Coatings Technology 71 (1995) 277-283.
  • [25]P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Micro-structural design of hard coatings, Progress in Materials Science 51 (2006) 1032-1114.
  • [26]D. Pakuła, L.A. Dobrzański, A. Kriz, M. Staszuk, Investigation of PVD coatings deposited on the Si3N4 and sialon tool ceramics, Archives of Materials Science and Engineering 46/1 (2010) 53-60.
  • [27] M.A. Baker, P.J. Kench, C. Tsotsos, P.N. Gibson, A. Leyland, A. Matthews, Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings, Journal of Vacuum Science and Technology A 23/3 (2005) 423-433.
  • [28]S. Veprek, M.G.J. Veprek-Heijman, The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites, Surface and Coatings Technology 201/13 (2007) 6064-6070.
  • [29]A.A. Voevodin, T.A. Fitz, J.J. Hu, J.S. Zabinski, Nano-composite tribological coatings with "chameleon" surface adaptation, Journal of Vacuum Science and Technology A 20/4 (2002) 1434-1444.
  • [30]C.W. Zou, H.J. Wang, M. Li, Y.F. Yu, C.S. Liu, L.P. Guo, D.J. Fu, Characterization and properties of TiN-containing amorphous Ti–Si–N nanocomposite coatings prepared by arc assisted middle frequency magnetron sputtering, Vacuum 84 (2010) 817-822.
  • [31]S.J. Bull, D.G. Bhat, M.H. Staia, Properties and performance of commercial TiCN coatings. Part 2: tribological perfor-mance, Surface and Coatings Technology 163-164 (2003) 507-514.
  • [32]K. Chu, P.W. Shum, Y.G. Shen, Substrate bias effects on mechanical and tribological properties of substitutional solid solution (Ti, Al)N films prepared by reactive magnetron sputtering, Materials Science and Engineering B 131 (2006) 62-71.
  • [33]L.A. Dobrzański, D. Pakuła, A. Kniz, M. Sokovic, J. Kopała, Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics, Journal of Materials Processing Technology 175 (2006) 179-185.
  • [34]G.S. Fox-Rabinovich, K. Yamomoto, S.C. Veldhuis, A.I. Ko-valev, G.K. Dosbaeva, Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining con-ditions, Surface and Coatings Technology 200/5-6 (2005) 1804-1813.
  • [35]I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha, K.H. Kim, Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system, Surface and Coatings Techno-logy 201/9-11 (2007) 5223-5227.
  • [36]C. Rebholz, H. Ziegele, A. Leyland, A. Matthews, Structure, mechanical and tribological properties of Ti–B–N and Ti–Al–B–N multiphase thin films produced by electron-beam evaporation, Journal of Vacuum Science and Technology A 16/5 (1998) 2851-2857.
  • [37]D.V. Shtansky, Ph.V. Kiryukhantsev-Korneev, I.A. Bash-kova, A.N. Sheveiko, E.A. Levashov, Multicomponent nanostructured films for various tribological applications, International Journal of Refractory Metals and Hard Materials 28/1 (2010) 32-39.
  • [38]R. Bayón, A. Igartua, X. Fernández, R. Martínez, R.J. Rodríguez, J.A. García, A. de Frutos, M.A. Arenas, J. de Damborenea, Corrosion wear behaviour of PVD Cr/CrN multi-layer coatings for gear applications, Tribology International 42/4 (2009) 591-599.
  • [39]A. Conde, C. Navas, A.B. Cristobal, J. Housden, J. de Dam-borenea, Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings, Surface and Coatings Technology 201/6 (2006) 2690-2695.
  • [40]L.A. Dobrzański, K. Lukaszkowicz, A. Zarychta, L. Cunha, Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate, Journal of Materials Processing Technology 164-165 (2005) 816-821.
  • [41]M. Fenker, M. Balzer, H. Kappl, A. Savan, Corrosion behaviour of MoSx-based coatings deposited onto high speed steel by magnetron sputtering, Surface and Coatings Techno-logy 201/7 (2006) 4099.
  • [42]K. Lukaszkowicz, J. Sondor, A. Kriz, M. Pancielejko, Structure, mechanical properties and corrosion resistance of nano-composite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Journal of Materials Science 45/6 (2010) 1629-1637.
  • [43]A.A. Voevodin, J.S. Żabinski, Nanocomposite and nanostructured tribological materials for space applications, Composites Science and Technology 65/5 (2005) 741-748.
  • [44] Y.C. Cheng, T. Browne, B. Heckerman, E.I. Meletis, Mechanical and tribological properties of nanocomposite TiSiN coatings, Surface and Coatings Technology 204/14 (2010) 2123-2129.
  • [45] L.A. Dobrzański, K. Lukaszkowicz, Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate, Journal of Materials Processing Technology 157-158 (2004) 317-323.
  • [46]S. Imamura, H. Fukui, A. Shibata, N. Omori, M. Setoyama, Properties and cutting performance of AlTiCrN/TiSiCN bilayer coatings deposited by cathodic-arc ion plating, Surface and Coatings Technology 202/4-7 (2007) 820-825.
  • [47]W. Kwaśny, Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 125-192.
  • [48]C. Li, S.Q. Wang, D. Yong, J. Li, Microstructure and mechanical properties of gradient Ti(C,N) and TiN/Ti(C, N) multi-layer PVD coatings, Materials Science and Engineering A 478 (2008) 336-339.
  • [49]C.Y.H. Lim, S.C. Lim, K.S. Lee, Wear of TiC-coated carbide tools in dry turning, Wear 225-229 (1999) 354-367.
  • [50]D. Pakuła, L.A. Dobrzański, K. Gołombek, M. Pancielejko, A. Kris, Structure and properties of the Si3N4 nitride ceramics with hard wear resistant coatings, Journal of Materials Processing Technology 157-158 (2004) 388-393.
  • [51]S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Materials Science and Engineering A 342 (2003) 59-79.
  • [52]M. Sokovic, M. Bahor, On the inter-relationships of some machinability parameters in finish machining with cermet TiN (PVD) coated tools, Journal of Materials Processing Technology 78/1-3 (1998) 163-170.
  • [53]M. Sokovic, J. Kopała, L.A. Dobrzański, J. Mikuła, K. Gołombek, D. Pakuła, Cutting characteristics of PVD and CVD –coated ceramic tool inserts, Tribology in industry 28/1-2 (2006) 3-8.
  • [54]V.V. Uglov, V.M. Anishchik, S.V. Zlotski, G. Abadias, S.N. Dub, Stress and mechanical properties of Ti–Cr–N gradient coatings deposited by vacuum arc, Surface and Coatings Technology 200 (2005) 178-181.
  • [55]S. Veprek, M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surface and Coatings Technology 202/21 (2008) 5063-5073.
  • [56]S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nano-composites, Thin Solid Films 476/1 (2005) 1-29.
  • [57]J.L. Endrino, G.S. Fox-Rabinovich, A. Reiter, S.V. Veldhuis, R. Escobar Galino, J.M. Albela, J.F. Marco, Oxidation tuning in AlCrN coatings, Surface and Coatings Technology 201/8 (2007) 4505-4511.
  • [58]P. Karvankova, M.G.J. Veprek-Heijman, M. Zawrah, S. Veprek, Thermal stability of nc-TiN/a-BN/a-TiB2 nanocomposite coatings deposited by plasma chemical vapor deposition, Thin Solid Films 467/1-2 (2004) 133-139.
  • [59]M. Kawate, A.K. Hashimoto, T. Suzuki, Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films, Surface and Coatings Technology 165/2 (2003) 163-167.
  • [60]D.B. Lee, T.D. Nguyen, S.K. Kim, Air-oxidation of nanomultilayered CrAlSiN thin films between 800 and 1000 °C, Surface and Coatings Technology 203/9 (2009) 1199-1204.
  • [61] A.E. Reiter, V.H. Derfinger, B. Hasenmann, T. Bachmann, B. Sartory, Investigation of the properties of Al1-x CrxN coatings prepared by cathodic arc evaporation, Surface and Coatings Technology 200/7 (2005) 2114-2122.
  • [62]L.A. Dobrzański, Structure and properties of high-speed steels with wear resistant cases or coatings, Journal of Materials Processing Technology 109 (2001) 44-51.
  • [63]L.A. Dobrzański, M. Adamiak, Structure and properties of the TiN and Ti(C,N) coatings deposited in the PVD process on high-speed steels, Journal of Materials Processing Technology 133 (2003) 50-62.
  • [64]L.A. Dobrzański, A. Zarychta, The structure and properties of W-Mo-V high-speed steels with increased contents of Si and Nb after heat treatment, Journal of Materials Processing Technology 77 (1998) 180-193.
  • [65]L.A. Dobrzański, A. Zarychta, M. Ligarski, High-speed steels with addition of niobium or titanium, Journal of Materials Processing Technology 63 (1997) 531-541.
  • [66]L.A. Dobrzański, A. Zarychta, M. Ligarski, Phase transformations during heat treatment of W-Mo-V 11-2-2 type high-speed steels with increased contents of Si and Nb or Ti, Journal of Materials Processing Technology 53 (1995) 109-120.
  • [67]M. Pancielejko, W. Precht, Structure, chemical and phase composition of hard titanium carbon nitride coatings deposited on HS6-5-2 steel, Journal of Materials Processing Technology 157-158 (2004) 394-298.
  • [68]M. Sokovic, J. Kopań, L.A. Dobrzański, M. Adamiak, Wear of PVD-coated solid carbide end mills in dry high-speed cutting, Journal of Materials Processing Technology 157-158 (2004) 422-426.
  • [69]L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010) 187-193.
  • [70] L.A. Dobrzański, Design and manufacturing functional gradient tool materials – dependence properties on technology and thickness of surface layers with a gradient of both chemical and phase composition manufactured on tool from different applications. Design and manufacturing functional gradient materials, The Polish Academy of Science, Cracow 2007.
  • [71]L.A. Dobrzański, K. Gołombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN + mono-, gradient- or multi(Ti,Al,Si)N + TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [72]L.A. Dobrzański, K. Gołombek, E. Hajduczek, Structure of the nanocrystalline coatings obtained on the CAE process on the sintered tool materials, Journal of Materials Processing Technology 175 (2006) 157-162.
  • [73]Y.Y. Tse, D. Babonneau, A. Michel, G. Abadias, Nanometer-scale multilayer coatings combining a soft metallic phase and a hard nitride phase: study of the interface structure and mor-phology, Surface and Coating Technology 180-181 (2004) 470-477.
  • [74]L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Multi-layer and gradient PVD coatings on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 170-190.
  • [75]W. Lengauer, K. Dreyer, Functionally graded hardmetals, Journal of Alloys and Compounds 338 (2002) 194-212.
  • [76]K. Lukaszkowicz, L.A. Dobrzański, Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5-1 steel substrate, Journal of Materials Science 43/10 (2008) 3400-3407.
  • [77]B. Major, T. Wierzchoń, E. Reinhold, W. Wołczyński, J. Bonarski, G. Krużel, Graded materials on titanium matrix, Material Engineering 6 (2000) 340-343.
  • [78]G. Matula, Study on steel matrix composites with (Ti,Al) N gradient PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 79-86.
  • [79]FORSURF. Structural project in realisation, www.forsurf.pl, 2009-2012 (in Polish).
  • [80]N. Gerdsri, R.S. Vatananan, S. Dansamasatid, Dealing with the dynamics of technology roadmapping implementation: A case study, Technical Forecasting & Social Change 76 (2009) 50-60.
  • [81]Y. Yasunaga, M. Watanabe, M. Korenaga, Application of technology roadmaps to govermental innovation Policy for promoting technology convergence, Technical Forecasting & Social Change 76 (2009) 61-79.
  • [82]R. Phaal, G. Muller, An architectural framework for road-mapping: Towards visual strategy, Technological Forecasting & Social Change 76 (2009) 39-49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0055-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.