PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of electron radiation on properties of PLA

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper was to examine the effects of electron radiation on physicochemical properties of pristine poly(lactic acid) (PLA), or polylactide, and of polylactide containing a selected crosslinking agent. Design/methodology/approach: Samples to be examined were prepared in granulated forms or as moulded pieces and then treated with the high-energy electron radiation (ca. 10 MeV). The methods of gel permeation chromatography (GPC), rheology, Fourier transform infrared (FTIR) spectroscopy, and dynamic mechanical thermal analysis (DMA) were used to determine physicochemical properties of the samples. A humidity sensor was utilised to determine water vapour permeability. Findings: It has been found that PLA undergoes degradation upon the electron radiation. Triallyl isocyanurate (TAIC) when introduced into polylactide causes plasticization of this polymer whereas irradiation of polylactide containing TAIC leads to crosslinking of PLA. Crosslinked PLA exhibits limited plastic flow or no flow at all and an elevated glass transition temperature. Water vapour permeability of a film made of PLA modified this way is much less than that of a film produced from original PLA. Research limitations/implications: Further studies of crosslinked PLA are advisable, especially assessment of the gelation degree, strength of the plasticized material, and biodegradation. Practical implications: Crosslinked PLA may be applied in practical processes, especially in thermoforming in which increased resistance of a material against deformation at elevated temperatures is required. Originality/value: Substantial influence of the electron radiation on properties of PLA was established. The material undergoes significant degradation upon even relatively small radiation doses. In order to crosslink PLA, TAIC in the amount of ca. 3 wt% and the electron radiation doses of up to ca. 60 kGy have to be applied.
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej-Curie 55, 87-100 Toruń, Poland, r.malinowski@impib.pl
Bibliografia
  • [1] http://www.chemiaibiznes.com.pl/artykuly/pokaz/43O_kolejne_15_mln_ton_mniej.htmlki (03.2011)
  • [2] Z. Foltynowicz, P. Jakubiak, Polylactid acid - biodegradable polymer obtained from vegetable resources, Polymers 47 (2002) 769-774 (in Polish).
  • [3] J. Gołebiewski, E. Gibas, R. Malinowski, Selected biodegradable polymers - preparation, properties, applica-tions, Polymers 53 (2008) 799-807 (in Polish).
  • [4] A. Duda, S. Penczek, Polylactide [poly(lactic acid)]: synthe-sis, properties and applications, Polymers 48 (2003) 16-26 (in Polish).
  • [5] J.R. Sarasua, R.E. Prud'homme, M. Wisniewski, A.L. Borgne, N. Spassky, Crystallization and melting behaviour of polylactides, Macromolecules 31 (1998) 3895-3905.
  • [6] D. Garlotta, A literature review of poly(lactic acid), Journal of Polymers and the Environment 2 (2001) 63-84.
  • [7] J. Chłopek, A. Morawska-Chochół, B. Szaraniec, The influence of the environment on the degradation of polylactides and their composites, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 72-79.
  • [8] M. Denkiewicz, P. Rytlewski, R. Malinowski, Compositional, physical and chemical modification of polylactide, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 192-199.
  • [9] A. Duda, Poylactide - a polymer of the XXIst century?, Chemical Industry 82 (2003) 905-907 (in Polish).
  • [10] S. Słomkowski, M. Gadzinowski, S. Sosnowski, I. Radomska-Galant, Polylactide containing nanoparticles - new carriers of active compounds, Polymers 50 (2005) 546-555.
  • [11] H. Yamane, K. Sasai, Effect of the addition of poly(D-lactic acid) on the thermal property of poly(L-lactid acid), Polymer 44 (2003) 2569-2575.
  • [12] www.natureworksllc.com.
  • [13] E. Piórkowska, Z. Kuliński, K. Gadzinowska, Plasticization of polylactide, Polymers 54 (2009) 83-90 (in Polish).
  • [14] E. Piórkowska, Z. Kuliński, A. Gałęski, R. Masirek, Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol), Polymer 47 (2006) 7178-7188.
  • [15] Z. Kuliński, E. Piórkowska, K. Gadzinowska, M. Stasiak, Plasticization of poly(L-lactide) with poly(propylene glycol), Biomakromolecules 7 (2006) 2128-2135.
  • [16] A. J. Nijenhuis, E. Colstee, Grijpma, D. W. Pennings, High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: Thermal characterization and physical properties, Polymer 37 (1996) 5849-1857.
  • [17] L. Zhang, Ch. Xiong, X. Deng, Biodegradable polyester blends for biomedical application, Journal of Applied Polymer Science 56 (2003) 103-112.
  • [18] L.V. Labrecque, R.A. Kumar, V. Dave, R.A. Gross, S.P. McCarthy: Citrate esters as plasticizers for poly(lactic acid), Journal of Applied Polymer Science 66 (1997) 1507-1513.
  • [19] N. Ljungberg, B. Wesselen, The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid), Journal of Applied Polymer Science 86 (2002) 1227-1234.
  • [20] N. Tudorachi, R. Lipsa, Comparative study on starch modification with lactic acid and poly(lactic acid), Polymers 51 (2006) 425-430.
  • [21] O. Martin, L. Averous, Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer 42 (2001) 6209-6219.
  • [22] M.L. Focarete, M. Scandola, P. Dobrzyński, M. Kowalczuk, Miscibility and mechanical properties of blends of (L)-lactide copolymers with atactic poly(3-hydroxy-butyrate), Macromolecules 35 (2002) 8472-8477.
  • [23] D. Milicevic, S. Trifunovic, S. Galovic, E. Suljovrujic, Thermal and crystallization behaviour of gamma irradiated PLLA, Radiation Physics and Chemistry 76 (2007) 1376-1380.
  • [24] F. Jin, S.H. Hyon, H. Iwata, S. Tsutsumi, Crosslinking of poly(L-lactide) by ??-irradiation, Macromolecular Rapid Communications 23 (2002) 909-912.
  • [25] N. Nagasawa, A. Kaneda, S. Kanazawa, T. Yagi, H. Mitomo, F. Yoshii, M. Tamada, Application of poly(lactic acid) modified by radiation crosslinking, Nuclear Instruments and Methods in Physics Research Section B 236 (2005) 611-616.
  • [26] PN-EN ISO 294-1:2002, Plastics - Injection moulding of test speciments of thermoplastic materials - Part 1: General principles, and moulding of multipurpose and bar test specimens.
  • [27] S.M. Zebarjad, S.A. Sajjadi, M. Tahani, A. Lazzeri, A study on thermal behavior of HDPE/CaCO3 nanocomposites, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 173-176.
  • [28] P. Postawa, A. Szarek, J. Koszkul, DMTA method in determining strength parameters of acrylic cements, Archives of Materials Science and Engineering 28/5 (2007) 309-312.
  • [29] PN-EN ISO 1133:2006, Plastics - Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics.
  • [30] PN-EN ISO 15106-1:2007, Plastics - Film and sheeting - determination of water vapour transmission rate - part 1: Humidity detection sensor method.
  • [31] P. Nugroho, H. Mitomo, F. Yoshii, T. Kume, Degradation of poly(L-lactic acid) by γ-irradiation, Polymer Degradation and Stability 72 (2001) 337-343.
  • [32] A. Copinet, C. Bertrand, S. Govindin, V. Coma, Y. Couturier, Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films, Chemosphere 55 (2004) 763-773.
  • [33] A. Babanalbandi, D.J.T. Hill, J.H. O`Donnell, P.J. Pomery, A. Whittaker, An electron spin resonance study on γ-irradiated poly(D,L-lactic acid), Polymer Degradation and Stability 50 (1995) 297-304.
  • [34] P. Rytlewski, R. Malinowski, K. Moraczewski, M. Żenkiewicz, Influence of some crosslinking agents on thermal and mechanical properties of elektron beam irradiated polylactide, Radiation Physics and Chemistry 79 (2010) 1052-1057.
  • [35] M. Żenkiewicz, R. Malinowski, P. Rytlewski, Characte-rization and modification of poly(lactic acid), Polymer Materials (Edited by J. Koszkul), Publisher CWA Regina Poloniae, Częstochowa-Poraj, 2010, 157-165.
  • [36] T.M. Quynh, H. Mitomo, L. Zhao, M. Tamada, Properties of a poly(L-lactic acid)/poly(D-lactic acid) stereocomplex and the stereocomplex crosslinked with triallyl isocyanurate by irradiation, Journal of Applied Polymer Science 110 (2008) 2358-2365.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0052-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.