PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and mechanical properties of C355.0 cast aluminium alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main task of this work was to study the solidification process through analysis of the DSC curves that were obtained at solidification rate of 5 K/min. During C355.0 alloy solidification an amount of different intermetallic phases may form. Their volume fraction, chemical composition and morphology exert significant influence on a technological and mechanical properties of the aluminium alloys. Therefore the examination and identification of intermetallic phases in examined alloy is very important part of complex investigation. In this research the effect of precipitation hardening process on the microstructure and mechanical properties of C355.0 alloy has also been investigated. Design/methodology/approach: To study the solidification process differential scanning calorimetry (DSC) was used. Hardness measurements have been utilized to examined the effect of a precipitation hardening (T6) on the mechanical properties. The plastic and mechanical properties were evaluated by uniaxial tensile test at room temperature. To identify intermetallics in C355.0 alloy optical light microscopy (LM), X-ray diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscope were used. Findings: The results show that the as-cast microstructure of C355.0 alloy after slow solidification at a cooling rate 5K/min, consisted a wide range of intermetallics phases. The microstructure of investigated C355.0 alloy included: â-Al5FeSi, á-Al12(FeMn)3Si, Al2Cu, Q-Al5Cu2Mg8Si6, Si and Mg2Si phases. Significant changes in as-cast microstructure and mechanical properties followed after artificial aging due to a precipitation strengthening process were observed. Practical implications: The aim of this work was to analyze the solidification process and how T6 heat treatment influenced the microstructure and mechanical properties of C355.0 alloy. Additionaly this paper proposes the best experimental techniques for analysis of the intermetallic phases occurring in the cast and T6 condition. Originality/value: The paper has provided essential data about influence of solidification process and aging parameters on the microstructure and mechanical properties of C355.0 alloys.
Rocznik
Strony
85--94
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Department of Materials Science, Rzeszów University of Technology, ul. W. Pola 2, 35-959 Rzeszów, Poland, mrowka@prz.edu.pl
Bibliografia
  • [1] L.A. Dobrzański, W. Borek, R. Maniara, Influence of the crystallization condition on Al-Si-Cu casting alloys structure, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 211-214.
  • [2] Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, H.W. Doty, Parameters controlling the performance of AA319-type alloys Part I. Tensile properties, Materials Science and Engineering 367 (2004) 96-110.
  • [3] Z. Li, A.M. Samuel, C. Rayindran, S. Valtierra, H.W. Doty, Parameters controlling the performance of AA319-type alloys: Part II. Impact properties and fractography, Materials Science and Engineering 367 (2004) 111-122.
  • [4] F. King, Aluminium and its alloys, John Willey and Sons, New York, Chichester, Brisbane, Toronto, 1987.
  • [5] L. Lodgaard, N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys, Materials Since and Engineering 283 (2000) 144-152.
  • [6] I.J. Polmear, Light alloys. Metallurgy of light metals, Arnold, London-New York-Sydney-Auckland, 1995.
  • [7] L.F. Mondolfo, Aluminium Alloys: Structure and Properties, London-Boston, Butterworths, 1976.
  • [8] M. Kciuk,The structure, mechanical properties and corrosion resistance of aluminium AlMg1Si1 alloy, Journal of Achievements in Materials and Manufacturing Engineering, 16 (2006) 51-56.
  • [9] M. Warmuzek, J. Sieniawski, A. Gazda, G. Mrówka, Analysis of phase formation in AlFeMnSi alloy with variable content of Fe and Mn transition elements, Materials Engineering 137 (2003) 821-824.
  • [10] M. Wierzbińska, J. Sieniawski, Effect of morphology of eutectic silicon crystals on mechanical properties and clevage fractuce toughnessof AlSi5Cu1 alloy, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 217-220.
  • [11] G. Mrówka-Nowotnik, J. Sieniawski, A. Nowotnik, Tensile properties and fracture toughness of heat treated 6082 alloy, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 105-108.
  • [12] L.A. Dobrzański, R. Maniara, M. Krupiński, J.H. Sokołowski, Microstructure and mechanical properties of AC AlSi9CuX alloys, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 51-54.
  • [13] L.A. Dobrzański, R. Maniara, J.H. Sokołowski, The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristic, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 217-220.
  • [14] S. Karabay, M. Zeren, M. Yilmaz, Investigation of extrusion ratio effect on mechanical behaviour of extruded alloy AA- 6101 from the billets homogenised-rapid quenched and as-cast conditions, Journal of Materials Processing Technology 160 (2004) 138-147.
  • [15] G. Mrówka-Nowotnik, J. Sieniawski, Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys, Proceedings of 13th International Scientific Conference “Achievements in Mechanical and Materials Engineering” AMME’2005, Gliwice-Wisła, 2005, 447-450.
  • [16] Y.L. Liu, S.B. Kang, H.W. Kim, The complex microstructures in as-cast Al-Mg-Si alloy, Materials Letters 41 (1999) 267-272.
  • [17] M. Warmuzek, G. Mrówka-Nowotnik, J. Sieniawski, Influence of the heat treatment on the precipitation of the intermetallic phases in commercial AlMn1FeSi alloy, Journal of Materials Processing Technology 157-158 (2004) 624-632.
  • [18] R.A. Siddiqui, H.A. Abdullah, K.R. Al.-Belushi, Influence of aging parameters on the mechanical properties of 6063 aluminium alloy, Journal of Materials Processing Technology 102 (2000) 234-240.
  • [19] N.C.W. Kuijpers, W.H. Kool, P.T.G. Koenis, K.E. Nilsen, I. Todd, S. van der Zwaag, Assessment of diffrent techniques for quantification of -Al(FeMn)Si and -αAlFeSi intermetallics in AA 6xxx alloys, Materials Characterization 49 (2003) 409-420.
  • [20] G. Sha, K. O’Reilly, B. Cantor, J. Worth, R. Hamerton, Growth related phase selection in a 6xxx series wrought Al alloy, Materials Science and Engineering 304-306 (2001) 612-616.
  • [21] A.K. Gupta, D.J. Lloyd, S.A. Court,Precipitation hardening in Al-Mg-Si alloys with and without excess Si, Materials Science and Engineering 316 (2001) 11-17.
  • [22] G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Materialia 46/11(1998) 3893-3904.
  • [23] G. Mrówka-Nowotnik, The effect of intermetallics on the fracture mechanism in AlSi1MgMn alloy, Journal of Achievements in Materials and Manufacturing Engineering 30/1 (2008) 35-42.
  • [24] G. Biroli, G. Caglioti, L. Martini, G. Riontino, Precipitation kinetics of AA4032 and AA6082 a comparison based on DSC and TEM, Scripta Materialia 39/2 (1998) 197-203.
  • [25] G. Mrówka-Nowotnik, Intermetallic phase particles in cast AlSi5Cu1Mg and AlCu4Ni2Mg2 aluminium alloys, Archives of Materials Science and Engineering 38/2 (2009) 69-77.
  • [26] M. Czechowski, Fatigue life of friction stir welded Al-Mg alloys, Proceeding of the 13th International Scientific Conference on Achievements in Mechanical and Materials Engineering" AMME'2005, Gliwice-Wisła, 2005, 83-86.
  • [27] M. Kciuk, S. Tkaczyk, Structure, mechanical properties and corrosion resistance of AlMg5 and AlMg1Si1 alloys, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 39-42.
  • [28]F.O. Traekner, Factors Affecting the Physical Characteristics of Aluminium Magnesium Silicon Alloy Extrusions. Proceedings of the 2nd Internatonal Aluminium Extrusion Technology Seminar, Atlanta 1 (1977) 339-347.
  • [29] G. Mrówka-Nowotnik, J. Sieniawski, Influence of heat treatment on the micrustructure and mechanical properties of 6005 and 6082 aluminium alloys, Journal of Materials Processing Technology 162-163 (2005) 367-372.
  • [30] G. Mrówka-Nowotnik, J. Sieniawski M. Wierzbińska, Analysis of intermetallic particles in AlSi1MgMn aluminium alloys, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 155-158.
  • [31] L. Backerud, G. Chai, Solidification Characteristics of Aluminum Alloys 3, American Foundry Society, Des Plaines, Illinois, 1992.
  • [32] N.A. Belov, A.A. Aksenov, D.G Eskin, Iron in aluminium alloys, Taylor & Francis Inc, New York, 2002.
  • [33] PN-EN 10002-1+AC1, Metals. Standard method of tensile test at room temperature. [
  • [34] Y. Ji, F. Guo, Y. Pan, Microstructural characteristics and paint-bake response of Al-Mg-Si-Cu alloy, Transactions of Nonferrous Metals Society of China 18 (2008) 126-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0051-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.