PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of structure and properties of a sintered graded tool materials with cobalt matrix

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The mechanical alloying (MA) method has been chosen to manufacture tool gradient materials with high disproportion of cobalt matrix portion between core and surface layer. Design/methodology/approach: The following research studies have been carried out to elaborate a new group of sintered tool gradient materials, tungsten carbide with cobalt matrix, to elaborate their fabrication technology and to determine their structure and properties: a fabrication technology of mixtures and the formation technology of tungsten carbide gradient materials with cobalt matrix WC-Co was applied and elaborated; sintering conditions were selected experimentally, ensuring the best structure and properties; phase and chemical composition of the sintered gradient WC-Co materials was determined using EDX; the structure of sintered gradient WC-Co materials was investigated using scanning microscopy; mechanical and physical properties of sintered gradient WC-Co materials was determined: hardness, resistance to abrasive wear, resistance to brittle cracking. Findings: The presented research results confirm that the methods of mixing tungsten carbide in cobalt matrix an important effect upon the grain size of mixture. But it is not possible to determine the changes in grain size distribution. The larger particles break down rapidly that the product becomes more uniform. Practical implications: The material presented in this paper is characterized by very high hardness of the surface and relative ductility of the core. Originality/value: The obtained results show the possibility to manufacture TGMs on the basis of different portions of cobalt reinforced with hard ceramics particles in order to improve the abrasive resistance and ductility of tool cutting materials.
Rocznik
Strony
69--76
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science,Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] H.O. Andrén, Microstructure development during sintering and heat-treatment of cemented carbides and cermets, Materials Chemistry and Physics 67 (2001) 209-213.
  • [2] P. Bała, Influence of solution heat treatment on the microstructure and hardness of the new Ni-based alloy with a high carbon content, Archives of Materials Science and Engineering 45/1 (2010) 40-47.
  • [3] Z.G. Ban, L.L. Shaw, Synthesis and processing of nanostructured WC-Co materials, Journal of Materials Science 37 (2002) 3397-3403.
  • [4] U. Baste, S. Jacobson, A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons, Wear 264 (2008) 1129-1141.
  • [5] K. Bonny, P. De Baets, J. Quintelier, J. Vleugels, D. Jiang, O. Van der Biest, B. Lauwers, W. Liu, Surface finishing: Impact on tribological characteristics of WC-Co hardmetals, International Journal of Refractory Metals and Hard Materials 43 (2010) 40-54.
  • [6] A. Carpinteri, N. Puno, S. Puzzli, Strength vs. toughness optimization of microstructured composites, Chaos, Solitons and Fractals 39/3 (2009) 1210-1223.
  • [7] S.I. Cha, K.H. Lee, H.J. Ryu, S.H. Hong, Analytical modeling to calculate the hardness of ultra-one WC–Co cemented carbides, Materials Science and Engineering A 489 (2008) 234-244.
  • [8] L.A. Dobrzański, J. Hajduczek, A. Kloc-Ptaszna, Effect of sintering parameters on structure of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 33-40.
  • [9] L.A. Dobrzański, A. Kloc, G. Matula, J.M. Contreras, J.M. Torralba, Effect of manufacturing methods on structure and properties of the gradient tool materials with the non-alloy matrix reinforced with the HS6-5-2 type high-speed steel, Proceedings of the 11th International Scientific Conference “Contemporary Achievements in Mechanics, Manufacturing and Materials Science” CAM3S’2005, Gliwice - Zakopane, 2005, 223-228.
  • [10]M.H. Enayati, G.R. Aryanpour, A. Ebnonnasir, Production of nanostructured WC–Co powder by ball milling, International, International Journal of Refractory Metals and Hard Materials 27/1 (2009) 159-163.
  • [11] P. Fan, J. Guo, Z.Z. Fang, P. Prichard, Design of cobalt gradient via controlling carbon content and WC grain size in liquid-phase-sintered WC–Co composite, International Journal of Refractory Metals and Hard Materials 27 (2009) 256-260.
  • [12] P. Fan, J. Guo, Z.Z. Fang, P. Prichard, Effects of Liquid-Phase Composition on Its Migration during Liquid-Phase Sintering of Cemented Carbide, Metallurgical and Materials Transactions A 40/8 (2009) 1995-2006.
  • [13] G. Matula, Carbide alloyed composite manufactured with the PIM method, Archives of Materials Science and Engineering 43/2 (2010) 117-124.
  • [14] J. Pacyna, P. Bała, S. Dobosz, A. Kokosza, S. Kąc, The microstructure and properties of the bainitic cast steel for scissors crossovers, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010) 19-26.
  • [15] W. Sitek, Methodology of high-speed steels design using the artificial intelligence tools, Journal of Achievements in Materials and Manufacturing Engineering 39/2 (2010) 115-160.
  • [16] http://www.secowarwick.com.pl/vp_vvpt
  • [17] http://www.baildonit.com.pl/products.php
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0051-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.