PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative approach to modelling of hard tissues

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Investigating the capabilities of commercial CAD/CAM systems in producing 3D models of body bones from 2D medical images and application of resulting models in rapid manufacturing of customized implants. Design/methodology/approach: Geometrical information of 2D medical images extracted via an image processing and filtering mechanism, and converted into 3D models by Commercial CAD software systems. After applying a median filter to improve the quality of 2D images, they are segmented and bone edges are detected with histogram threshold method. With the aid of an Auto LISP program, detected edges are transferred to AutoCAD as a series of points. Splines are drawn over the points and redundant points deleted. Then by transferring resulted splines into the modeler, 3D models are constructed. Different implant manufacturing methods have been studied and rapid manufacturing methods have been recognized to be suitable for customized implant fabrication. Findings: A number of CAD software packages proved to be capable of producing 3D models using generated information, however, human intervention is needed for all systems tested. Different systems tested exhibited strenthnesses and weaknesses. Research limitations/implications: Automatic generation of 3D models of body bones from 2D images is desirable. Also development of an intelligent system for manufacturing of customized implants is highly desirable. Originality/value: Method of extracting geometric data from medical images and presenting this data in a format suitable for commercial CAD systems for making 3D models is of high value. Also the performance comparison of various CAD systems is very important.
Słowa kluczowe
Rocznik
Strony
119--125
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • School of Engineering, Edith Cowan University, Joondalup WA 6027, Australia, m.rad@ecu.edu.au
Bibliografia
  • [1] S. Grau, D. Ayala, D. Tost, E. Vergés, N. Mino, F. Munoz, A. González, M.P. Ginebra, J.A. Planel, Bio-CAD modelling of bone-implants, A: Actas del XXIII Congreso anual de la Sociedad Espanola de Ingeniería Biomédica, CASEIB, 2005, 527-530.
  • [2] W. Sun, B. Starly, A. Darling, C. Gomez, Computer-aided tissue engineering: application to biomimetic modeling and design of tissue scaffolds, Biotechnology and Applied Biochemistry 39/1 (2004) 49-58.
  • [3] O.C. Marte, P. Marais, Model-based Segmentation of CT Images, University of Cape Town, South Africa, 2000.
  • [4] B. Starly, Z. Fang, W. Sun, A. Shokoufandeh, W. Regli, Three-Dimensional Reconstruction for Medical-CAD Modeling, Computer-Aided Design and Applications 2/1-4 (2005) 431-438.
  • [5] J. Wang, V.M. Gharpuray, R.L. Dooley, Automated 3D Reconstruction of 2D Medical Images: Application to Biomedical Modeling, Proceedings of the 21st Annual Meeting of The American Society of Biomechanics, Clemson University, South Carolina, USA, 1997.
  • [6] N.J. Emory, Rapid Prototyping: The Future for Bioceramic Implants, American Ceramic Society Bulletin 80/3 (2001) 23-26.
  • [7] K.L. Chelule, T. Coole, D.G. Cheshire, Fabrication of Medical Models From Scan Data Via Rapid Prototypig Techniques, Staffordshire University, UK, 1999.
  • [8] M. Petrou, P. Bosdogianni, P. Bosdogianni, Image Processing: The Fundamentals, 1999, 333-338.
  • [9] R. Noorani, Rapid Prototyping: Principles and Applications, John Wiley and Sons Inc, 2005.
  • [10] T.C. Chang, R.A. Wysk, H.P. Wang, Computer-aided manu-facturing, Third Edition, Prentic Hall, New Jersey, 2006.
  • [11] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, P. Podstawski, Functional properties of the sintered tool materials with (Ti,Al)N coating, Journal of Achievements in Materials and Manufacturing Engineering 36/2 (2009) 134-141.
  • [12] M. Clapa, D. Batory, Improving adhesion and wear resistance of carbon coatings using Ti:C gradient layers, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 415-418.
  • [13] L.A. Dobrzański, J. Hajduczek, A. Kloc-Ptaszna, Effect of the sintering parameters on structure of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 33-40.
  • [14] P. Panjan, I. Boncina, J. Bevk, M. Cekada, PVD hard coatings applied for wear protection of drawing dies, Surface and Coating Technology 200 (2005) 133-136.
  • [15] L.A. Dobrzański, L.W. Żukowska, Properties of the multicomponent and gradient PVD coatings, Archives of Materials Science and Engineering 28/10 (2007) 621-624.
  • [16] K. Gołombek, J. Mikuła, D. Pakuła, L.W. Żukowska, L.A. Dobrzański, Sintered tool materials with multicomponent PVD gradient coating, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 15-22.
  • [17] L.A. Dobrzański, L.W. Wosińska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201 (2008) 310-314.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0048-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.